I need your help!
I want your feedback to make the book better for you and other readers. If you find typos, errors, or places where the text may be improved, please let me know. The best ways to provide feedback are by GitHub or hypothes.is annotations.
Opening an issue or submitting a pull request on GitHub: https://github.com/isaactpetersen/Principles-Psychological-Assessment
Adding an annotation using hypothes.is.
To add an annotation, select some text and then click the
symbol on the pop-up menu.
To see the annotations of others, click the
symbol in the upper right-hand corner of the page.
References
Achenbach, T. M. (2001). What are norms and why do we need valid ones?
Clinical Psychology: Science and Practice, 8(4),
446–450. https://doi.org/10.1093/clipsy.8.4.446
Ackerman, P. L. (2013). Assessment of intellectual functioning in
adults. In K. F. Geisinger, J. F. Carlson, J.-I. C. Hansen, N. R.
Kuncel, S. P. Reise, & M. C. Rodriguez (Eds.), APA handbook of
testing and assessment in psychology, Vol 2:
Testing and assessment in clinical and counseling
psychology (pp. 119–132). American Psychological Association.
Ægisdóttir, S., White, M. J., Spengler, P. M., Maugherman, A. S.,
Anderson, L. A., Cook, R. S., Nichols, C. N., Lampropoulos, G. K.,
Walker, B. S., Cohen, G., & Rush, J. D. (2006). The meta-analysis of
clinical judgment project: Fifty-six years of accumulated research on
clinical versus statistical prediction. The Counseling
Psychologist, 34(3), 341–382. https://doi.org/10.1177/0011000005285875
Aguinis, H., Culpepper, S. A., & Pierce, C. A. (2010). Revival of
test bias research in preemployment testing. Journal of Applied
Psychology, 95(4), 648–680. https://doi.org/10.1037/a0018714
Aguinis, H., Edwards, J. R., & Bradley, K. J. (2017). Improving our
understanding of moderation and mediation in strategic management
research. Organizational Research Methods, 20(4),
665–685. https://doi.org/10.1177/1094428115627498
Ahuvia, I. L., Schleider, J. L., Kneeland, E. T., Moser, J. S., &
Schroder, H. S. (2024). Depression self-labeling in U.S.
College students: Associations with perceived control and coping
strategies. Journal of Affective Disorders, 351,
202–210. https://doi.org/10.1016/j.jad.2024.01.229
Allaire, J. J., Teague, C., Scheidegger, C., Xie, Y., Dervieux, C.,
& Woodhull, G. (2025). Quarto (Version 1.8)
[Computer software]. https://doi.org/10.5281/zenodo.5960048
American Educational Research Association, American Psychological
Association, & National Council on Measurement in Education. (2014).
Standards for educational and psychological testing. American
Educational Research Association.
American Psychological Association. (2017). Ethical principles of
psychologists and code of conduct.
American Psychological Association. (2020). Publication manual of
the American Psychological Association (7th ed.).
American Psychological Association Office of Ethnic Minority Affairs.
(1993). Guidelines for providers of psychological services to ethnic,
linguistic, and culturally diverse populations. American
Psychologist, 48(1), 45–48. https://doi.org/10.1037/0003-066X.48.1.45
Antony, M. M., & Rowa, K. (2005). Evidence-based assessment of
anxiety disorders in adults. Psychological Assessment,
17(3), 256–266. https://doi.org/10.1037/1040-3590.17.3.256
Arnett, A., Pennington, B., Willcutt, E., Dmitrieva, J., Byrne, B.,
Samuelsson, S., & Olson, R. (2012). A cross-lagged model of the
development of ADHD inattention symptoms and rapid naming speed.
Journal of Abnormal Child Psychology, 40(8),
1313–1326. https://doi.org/10.1007/s10802-012-9644-5
Arvey, R. D., Bouchard, T. J., Carroll, J. B., Cattell, R. B., Cohen, D.
B., Dawis, R. V., Detterman, D. K., Dunnette, M., Eysenck, H., Feldman,
J. M., Fleishman, E. A., Gilmore, G. C., Gordon, R. A., Gottfredson, L.
S., Greene, R. L., Haier, R. J., Hardin, G., Hogan, R., Horn, J. M., …
Willerman, L. (1994). Mainstream science on intelligence. Wall
Street Journal, 13(1), 18–25.
Atanasov, P., Witkowski, J., Ungar, L., Mellers, B., & Tetlock, P.
(2020). Small steps to accuracy: Incremental belief updaters are better
forecasters. Organizational Behavior and Human Decision
Processes, 160, 19–35. https://doi.org/10.1016/j.obhdp.2020.02.001
Austin, P. C., & Steyerberg, E. W. (2014). Graphical assessment of
internal and external calibration of logistic regression models by using
loess smoothers. Statistics in Medicine, 33(3),
517–535. https://doi.org/10.1002/sim.5941
Avugos, S., Köppen, J., Czienskowski, U., Raab, M., & Bar-Eli, M.
(2013). The “hot hand” reconsidered: A meta-analytic
approach. Psychology of Sport and Exercise, 14(1),
21–27. https://doi.org/10.1016/j.psychsport.2012.07.005
Baird, C., & Wagner, D. (2000). The relative validity of actuarial-
and consensus-based risk assessment systems. Children and Youth
Services Review, 22(11), 839–871. https://doi.org/10.1016/S0190-7409(00)00122-5
Bakeman, R., & Goodman, S. H. (2020). Interobserver reliability in
clinical research: Current issues and discussion of how to establish
best practices. Journal of Abnormal Psychology,
129(1), 5–13. https://doi.org/10.1037/abn0000487
Ballesteros-Pérez, P., González-Cruz, M. C., & Mora-Melià, D.
(2018). Explaining the Bayes’ theorem graphically.
Proceedings of the International Technology, Education and
Development Conference.
Baltes, P. B. (1968). Longitudinal and cross-sectional sequences in the
study of age and generation effects. Human Development,
11(3), 145–171. http://www.jstor.org/stable/26761719
Bandalos, D. L. (2018). Measurement theory and applications for the
social sciences. Guilford Publications.
Bar-Eli, M., Avugos, S., & Raab, M. (2006). Twenty years of
“hot hand” research: Review and critique. Psychology of
Sport and Exercise, 7(6), 525–553. https://doi.org/10.1016/j.psychsport.2006.03.001
Baron-Cohen, S. (2002). The extreme male brain theory of autism.
Trends in Cognitive Sciences, 6(6), 248–254. https://doi.org/10.1016/S1364-6613(02)01904-6
Baron-Cohen, S. (2010). Empathizing, systemizing, and the extreme male
brain theory of autism. In I. Savic (Ed.), Progress in brain
research (Vol. 186, pp. 167–175). Elsevier.
Barrash, J., Stillman, A., Anderson, S. W., Uc, E. Y., Dawson, J. D.,
& Rizzo, M. (2010). Prediction of driving ability with
neuropsychological tests: Demographic adjustments diminish accuracy.
Journal of the International Neuropsychological Society,
16(4), 679–686. https://doi.org/10.1017/S1355617710000470
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2022). lme4: Linear mixed-effects models using
Eigen and S4. https://github.com/lme4/lme4/
Bauer, D. J., Belzak, W. C. M., & Cole, V. T. (2020). Simplifying
the assessment of measurement invariance over multiple background
variables: Using regularized moderated nonlinear factor analysis to
detect differential item functioning. Structural Equation Modeling:
A Multidisciplinary Journal, 27(1), 43–55. https://doi.org/10.1080/10705511.2019.1642754
BBC. (1973). Monty python’s flying circus: S3E38 - a book at
bedtime. https://osf.io/gc79d
Beaujean, A. A. (2014). Latent variable modeling using
R: A step-by-step guide. Routledge.
Beltz, A. M., Wright, A. G. C., Sprague, B. N., & Molenaar, P. C. M.
(2016). Bridging the nomothetic and idiographic approaches to the
analysis of clinical data. Assessment, 23(4), 447–458.
https://doi.org/10.1177/1073191116648209
Belzak, W. C. M., & Bauer, D. J. (2020). Improving the assessment of
measurement invariance: Using regularization to select anchor items and
identify differential item functioning. Psychological Methods,
25(6), 673–690. https://doi.org/10.1037/met0000253
Benjamin, L. T. (2005). A history of clinical psychology as a profession
in America (and a glimpse of its future). Annual Review
of Clinical Psychology, 1, 1–30. https://doi.org/10.1146/annurev.clinpsy.1.102803.143758
Bennett, C. M., Miller, M. B., & Wolford, G. L. (2009). Neural
correlates of interspecies perspective taking in the post-mortem
Atlantic Salmon: An argument for multiple
comparisons correction. NeuroImage, 47, S125. https://doi.org/10.1016/S1053-8119(09)71202-9
Bennett, C. M., Miller, M. B., & Wolford, G. L. (2010). Neural
correlates of interspecies perspective taking in the post-mortem
Atlantic Salmon: An argument for multiple
comparisons correction. Journal of Serendipitous and Unexpected
Results, 1, 1–5. https://teenspecies.github.io/pdfs/NeuralCorrelates.pdf
Benning, S. D., Bachrach, R. L., Smith, E. A., Freeman, A. J., &
Wright, A. G. C. (2019). The registration continuum in clinical science:
A guide toward transparent practices. Journal of Abnormal
Psychology, 128(6), 528–540. https://doi.org/10.1037/abn0000451
Bensch, D., Maaß, U., Greiff, S., Horstmann, K. T., & Ziegler, M.
(2019). The nature of faking: A homogeneous and predictable construct?
Psychological Assessment, 31(4), 532–544. https://doi.org/10.1037/pas0000619
Berry, D., & Willoughby, M. T. (2017). On the practical
interpretability of cross-lagged panel models: Rethinking a
developmental workhorse. Child Development, 88(4),
1186–1206. https://doi.org/10.1111/cdev.12660
Bersoff, D. N., DeMatteo, D., & Foster, E. E. (2012). Assessment and
testing. In S. J. Knapp (Ed.), APA handbook of ethics in psychology,
Vol 2: Practice, teaching, and research
(pp. 45–74). American Psychological Association.
Bickel, J. E., & Kim, S. D. (2008). Verification of The
Weather Channel probability of precipitation
forecasts. Monthly Weather Review, 136(12), 4867–4881.
https://doi.org/10.1175/2008MWR2547.1
Bland, J. M., & Altman, D. G. (1986). Statistical methods for
assessing agreement between two methods of clinical measurement. The
Lancet, 327(8476), 307–310. https://doi.org/10.1016/S0140-6736(86)90837-8
Bland, J. M., & Altman, D. G. (1999). Measuring agreement in method
comparison studies. Statistical Methods in Medical Research,
8(2), 135–160. https://doi.org/10.1177/096228029900800204
Blashfield, R. K., Keeley, J. W., Flanagan, E. H., & Miles, S. R.
(2014). The cycle of classification: DSM-I through DSM-5.
Annual Review of Clinical Psychology, 10(1), 25–51. https://doi.org/10.1146/annurev-clinpsy-032813-153639
Blumberg, M. S. (2013). Homology, correspondence, and continuity across
development: The case of sleep. Developmental Psychobiology,
55(1), 92–100. https://doi.org/10.1002/dev.21024
Bocskocsky, A., Ezekowitz, J., & Stein, C. (2014). The hot hand: A
new approach to an old “fallacy.” MIT Sloan Sports
Analytics Conference.
Bolger, F., & Önkal-Atay, D. (2004). The effects of feedback on
judgmental interval predictions. International Journal of
Forecasting, 20(1), 29–39. https://doi.org/10.1016/S0169-2070(03)00009-8
Bollen, K. A. (1989). Structural equations with latent
variables. John Wiley & Sons.
Bollen, K. A. (2002). Latent variables in psychology and the social
sciences. Annual Review of Psychology, 53(1), 605–634.
https://doi.org/10.1146/annurev.psych.53.100901.135239
Bollen, K. A., & Bauldry, S. (2011). Three Cs in
measurement models: Causal indicators, composite indicators, and
covariates. Psychological Methods, 16(3), 265–284. https://doi.org/10.1037/a0024448
Bollen, K. A., & Diamantopoulos, A. (2017). In defense of
causal-formative indicators: A minority report. Psychological
Methods, 22(3), 581–596. https://doi.org/10.1037/met0000056
Bollen, K. A., & Lennox, R. D. (1991). Conventional wisdom on
measurement: A structural equation perspective. Psychological
Bulletin, 110(2), 305–314. https://doi.org/10.1037/0033-2909.110.2.305
Boring, E. G. (1923). Intelligence as the tests test it. New
Republic, 36, 35–37.
Bornstein, R. F. (2011). Toward a process-focused model of test score
validity: Improving psychological assessment in science and practice.
Psychological Assessment, 23(2), 532–544. https://doi.org/10.1037/a0022402
Borsboom, D. (2003). Conceptual issues in psychological
measurement. Universiteit van Amsterdam.
Box, G. E. P. (1979). Robustness in the strategy of scientific model
building. In R. L. Launer & G. N. Wilkinson (Eds.), Robustness
in statistics. Academic Press.
Brennan, R. L. (1992). Generalizability theory. Educational
Measurement: Issues and Practice, 11(4), 27–34. https://doi.org/10.1111/j.1745-3992.1992.tb00260.x
Brennan, R. L. (2001). Generalizability theory. Springer New
York. https://books.google.com/books?id=nbHbBwAAQBAJ
Brickman, A. M., Cabo, R., & Manly, J. J. (2006). Ethical issues in
cross-cultural neuropsychology. Applied Neuropsychology,
13(2), 91–100. https://doi.org/10.1207/s15324826an1302_4
Brown, R. T., Reynolds, C. R., & Whitaker, J. S. (1999). Bias in
mental testing since bias in mental testing. School Psychology
Quarterly, 14(3), 208–238. https://doi.org/10.1037/h0089007
Buchanan, T. (2002). Online assessment: Desirable or dangerous?
Professional Psychology: Research and Practice, 33(2),
148–154. https://doi.org/10.1037/0735-7028.33.2.148
Burchett, D., & Ben-Porath, Y. S. (2019). Methodological
considerations for developing and evaluating response bias indicators.
Psychological Assessment, 31(12), 1497–1511. https://doi.org/10.1037/pas0000680
Burisch, M. (1984). Approaches to personality inventory construction: A
comparison of merits. American Psychologist, 39,
214–227. https://doi.org/10.1037/0003-066X.39.3.214
Bürkner, P.-C. (2021). Bayesian item response modeling in R
with brms and Stan. Journal
of Statistical Software, 100(5), 1–54. https://doi.org/10.18637/jss.v100.i05
Burlew, A. K., Peteet, B. J., McCuistian, C., & Miller-Roenigk, B.
D. (2019). Best practices for researching diverse groups. American
Journal of Orthopsychiatry, 89(3), 354–368. https://doi.org/10.1037/ort0000350
Buros Center for Testing. (2021). The twenty-first mental
measurements yearbook. Buros Center for Testing.
Busemeyer, J. R., & Jones, L. E. (1983). Analysis of multiplicative
combination rules when the causal variables are measured with error.
Psychological Bulletin, 93(3), 549–562. https://doi.org/10.1037/0033-2909.93.3.549
Busemeyer, J. R., & Stout, J. C. (2002). A contribution of cognitive
decision models to clinical assessment: Decomposing performance on the
Bechara gambling task. Psychological Assessment,
14(3), 253–262. https://doi.org/10.1037/1040-3590.14.3.253
Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint,
J., Robinson, E. S. J., & Munafo, M. R. (2013a). Confidence and
precision increase with high statistical power. Nature Reviews
Neuroscience, 14(8), 585–585. https://doi.org/10.1038/nrn3475-c4
Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint,
J., Robinson, E. S. J., & Munafo, M. R. (2013b). Power failure: Why
small sample size undermines the reliability of neuroscience. Nature
Reviews Neuroscience, 14(5), 365–376. https://doi.org/10.1038/nrn3475
Byrd, D. A., Rivera Mindt, M. M., Clark, U. S., Clarke, Y., Thames, A.
D., Gammada, E. Z., & Manly, J. J. (2021). Creating an antiracist
psychology by addressing professional complicity in psychological
assessment. Psychological Assessment, 33(3), 279–285.
https://doi.org/10.1037/pas0000993
Calamia, M. (2019). Practical considerations for evaluating reliability
in ambulatory assessment studies. Psychological Assessment,
31(3), 285–291. https://doi.org/10.1037/pas0000599
Camilli, G. (2013). Ongoing issues in test fairness. Educational
Research and Evaluation, 19(2–3), 104–120. https://doi.org/10.1080/13803611.2013.767602
Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant
validation by the multitrait-multimethod matrix. Psychological
Bulletin, 56(2), 81–105. https://doi.org/10.1037/h0046016
Campbell, L., Vasquez, M., Behnke, S., & Kinscherff, R. (2010).
APA ethics code commentary and case illustrations (pp. v,
392–v, 392). American Psychological Association.
Carlson, S. M., & Zelazo, P. D. (2014). Minnesota executive
function scale. Test manual. Reflection Sciences, LLC.
Carpenter, R. W., Wycoff, A. M., & Trull, T. J. (2016). Ambulatory
assessment: New adventures in characterizing dynamic processes.
Assessment, 23(4), 414–424. https://doi.org/10.1177/1073191116632341
Cashel, M. L. (2002). Child and adolescent psychological assessment:
Current clinical practices and the impact of managed care.
Professional Psychology: Research and Practice, 33(5),
446–453. https://doi.org/10.1037/0735-7028.33.5.446
Caspi, A., Houts, R. M., Ambler, A., Danese, A., Elliott, M. L., Hariri,
A., Harrington, H., Hogan, S., Poulton, R., Ramrakha, S., Rasmussen, L.
J. H., Reuben, A., Richmond-Rakerd, L., Sugden, K., Wertz, J., Williams,
B. S., & Moffitt, T. E. (2020). Longitudinal assessment of mental
health disorders and comorbidities across 4 decades among participants
in the Dunedin Birth Cohort
Study. JAMA Network Open, 3(4),
e203221–e203221. https://doi.org/10.1001/jamanetworkopen.2020.3221
Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J.,
Harrington, H., Israel, S., Meier, M. H., Ramrakha, S., Shalev, I.,
Poulton, R., & Moffitt, T. E. (2014). The p factor: One general
psychopathology factor in the structure of psychiatric disorders?
Clinical Psychological Science, 2(2), 119–137. https://doi.org/10.1177/2167702613497473
Caspi, A., & Shiner, R. L. (2006). Personality development. In N.
Eisenberg, W. Damon, & R. M. Lerner (Eds.), Handbook of child
psychology (6th ed., Vol. 3, pp. 300–365). John Wiley & Sons,
Inc.
Cattell, R. B. (1966). The scree test for the number of factors.
Multivariate Behavioral Research, 1(2), 245–276. https://doi.org/10.1207/s15327906mbr0102_10
Chalmers, P. (2020). mirt:
Multidimensional item response theory. https://CRAN.R-project.org/package=mirt
Chalmers, P. (2021). mirtCAT:
Computerized adaptive testing with multidimensional item response
theory. https://CRAN.R-project.org/package=mirtCAT
Chandler, J., Sisso, I., & Shapiro, D. (2020). Participant
carelessness and fraud: Consequences for clinical research and potential
solutions. Journal of Abnormal Psychology, 129(1),
49–55. https://doi.org/10.1037/abn0000479
Charba, J. P., & Klein, W. H. (1980). Skill in precipitation
forecasting in the National Weather
Service. Bulletin of the American Meteorological
Society, 61(12), 1546–1555. https://doi.org/10.1175/1520-0477(1980)061<1546:SIPFIT>2.0.CO;2
Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of
measurement invariance. Structural Equation Modeling: A
Multidisciplinary Journal, 14(3), 464–504. https://doi.org/10.1080/10705510701301834
Chen, F. F. (2008). What happens if we compare chopsticks with forks?
The impact of making inappropriate comparisons in cross-cultural
research. Journal of Personality and Social Psychology,
95(5), 1005–1018. https://doi.org/10.1037/a0013193
Chen, F. R., & Jaffee, S. R. (2015). The heterogeneity in the
development of homotypic and heterotypic antisocial behavior.
Journal of Developmental and Life-Course Criminology,
1(3), 269–288. https://doi.org/10.1007/s40865-015-0012-3
Chen, Y., Prudêncio, R. B. C., Diethe, T., & Flach, P. (2019). β3-IRT: A new item response model
and its applications. arXiv:1903.04016. https://arxiv.org/abs/1903.04016
Cheng, Y., Shao, C., & Lathrop, Q. N. (2016). The mediated MIMIC
model for understanding the underlying mechanism of DIF. Educational
and Psychological Measurement, 76(1), 43–63. https://doi.org/10.1177/0013164415576187
Cheung, G. W., Cooper-Thomas, H. D., Lau, R. S., & Wang, L. C.
(2024). Reporting reliability, convergent and discriminant validity with
structural equation modeling: A review and best-practice
recommendations. Asia Pacific Journal of Management,
41(2), 745–783. https://doi.org/10.1007/s10490-023-09871-y
Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit
indexes for testing measurement invariance. Structural Equation
Modeling: A Multidisciplinary Journal, 9(2), 233–255. https://doi.org/10.1207/s15328007sem0902_5
Childs, D. Z., Hindle, B. J., & Warren, P. H. (2021). APS 240:
Data analysis and statistics with R. https://dzchilds.github.io/stats-for-bio/
Choca, J. P., & Rossini, E. D. (2018). Assessment using the
Rorschach inkblot test. American Psychological
Association.
Cicchetti, D., & Rogosch, F. A. (2002). A developmental
psychopathology perspective on adolescence. Journal of Consulting
and Clinical Psychology, 70(1), 6–20. https://doi.org/10.1037/0022-006X.70.1.6
Civelek, M. E. (2018). Essentials of structural equation
modeling. Zea E-Books.
Clark, L. A., & Watson, D. (1995). Constructing validity: Basic
issues in objective scale development. Psychological
Assessment, 7, 309–319. https://doi.org/10.1037/1040-3590.7.3.309
Clark, L. A., & Watson, D. (2019). Constructing validity: New
developments in creating objective measuring instruments.
Psychological Assessment, 31(12), 1412–1427. https://doi.org/10.1037/pas0000626
Clark, M. J., & Grandy, J. (1984). Sex differences in the
academic performance of Scholastic Aptitude
Test takers: College board report no. 84-8. College
Board Publications.
Clark, S. J., & Desharnais, R. A. (1998). Honest answers to
embarrassing questions: Detecting cheating in the randomized response
model. Psychological Methods, 3(2), 160–168. https://doi.org/10.1037/1082-989X.3.2.160
Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for
scaled disagreement or partial credit. Psychological Bulletin,
70(4), 213–220. https://doi.org/10.1037/h0026256
Cohen, Z. D., & DeRubeis, R. J. (2018). Treatment selection in
depression. Annual Review of Clinical Psychology,
14(1), 209–236. https://doi.org/10.1146/annurev-clinpsy-050817-084746
Cole, N. S. (1981). Bias in testing. American Psychologist,
36(10), 1067–1077. https://doi.org/10.1037/0003-066X.36.10.1067
Cole, V., Gottfredson, N., & Giordano, M. (2018). aMNLFA: Automated fitting of moderated nonlinear
factor analysis through the Mplus program. https://CRAN.R-project.org/package=aMNLFA
Committee on the General Aptitude Test Battery, Commission on Behavioral
and Social Sciences and Education, & National Research Council.
(1989). Fairness in employment testing: Validity generalization,
minority issues, and the general aptitude test battery. National
Academies Press.
Conradt, E., Crowell, S. E., & Cicchetti, D. (2021). Using
development and psychopathology principles to inform the research domain
criteria (RDoC) framework. Development and Psychopathology,
33(5), 1521–1525. https://doi.org/10.1017/S0954579421000985
Cooper, L. D., & Balsis, S. (2009). When less is more: How fewer
diagnostic criteria can indicate greater severity. Psychological
Assessment, 21(3), 285–293. https://doi.org/10.1037/a0016698
Cortina, J. M. (1993). What is coefficient alpha? An examination of
theory and applications. Journal of Applied Psychology,
78, 98–104. https://doi.org/10.1037/0021-9010.78.1.98
Costa Jr., P. T., McCrae, R. R., & Löckenhoff, C. E. (2019).
Personality across the life span. Annual Review of Psychology,
70(1), 423–448. https://doi.org/10.1146/annurev-psych-010418-103244
Counsell, A., Cribbie, R. A., & Flora, D. B. (2020). Evaluating
equivalence testing methods for measurement invariance. Multivariate
Behavioral Research, 55(2), 312–328. https://doi.org/10.1080/00273171.2019.1633617
Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in
psychological tests. Psychological Bulletin, 52(4),
281–302. https://doi.org/10.1037/h0040957
Curran, P. J., & Hancock, G. R. (2020). Quantitude: "S2E15:
Ethics in quantitative research". https://quantitudepod.org/s2e15-ethics-in-quantitative-research/
Curran, P. J., Howard, A. L., Bainter, S. A., Lane, S. T., &
McGinley, J. S. (2014). The separation of between-person and
within-person components of individual change over time: A latent curve
model with structured residuals. Journal of Consulting and Clinical
Psychology, 82, 8–94. https://doi.org/10.1037/a0035297
Dana, J., & Thomas, R. (2006). In defense of clinical judgment … and
mechanical prediction. Journal of Behavioral Decision Making,
19(5), 413–428. https://doi.org/10.1002/bdm.537
Dana, R. H. (1998). Multicultural assessment of personality and
psychopathology in the United States: Still
art, not yet science, and controversial. European Journal of
Psychological Assessment, 14(1), 62–70. https://doi.org/10.1027/1015-5759.14.1.62
Daugherty, J. C., Puente, A. E., Fasfous, A. F., Hidalgo-Ruzzante, N.,
& Pérez-Garcia, M. (2017). Diagnostic mistakes of culturally diverse
individuals when using North American
neuropsychological tests. Applied Neuropsychology: Adult,
24(1), 16–22. https://doi.org/10.1080/23279095.2015.1036992
Davison, G. C., Vogel, R. S., & Coffman, S. G. (1997). Think-aloud
approaches to cognitive assessment and the articulated thoughts in
simulated situations paradigm. Journal of Consulting and Clinical
Psychology, 65(6), 950–958. https://doi.org/10.1037/0022-006X.65.6.950
Dawes, R. M. (1986). Representative thinking in clinical judgment.
Clinical Psychology Review, 6, 425–441. https://doi.org/10.1016/0272-7358(86)90030-9
Dawes, R. M., Faust, D., & Meehl, P. E. (1989). Clinical versus
actuarial judgment. Science, 243(4899), 1668–1674. https://doi.org/10.1126/science.2648573
DeRubeis, R. J., Cohen, Z. D., Forand, N. R., Fournier, J. C., Gelfand,
L. A., & Lorenzo-Luaces, L. (2014). The personalized advantage
index: Translating research on prediction into individualized treatment
recommendations. A demonstration. PLoS ONE, 9(1),
e83875. https://doi.org/10.1371/journal.pone.0083875
Diamantopoulos, A., Riefler, P., & Roth, K. P. (2008). Advancing
formative measurement models. Journal of Business Research,
61(12), 1203–1218. https://doi.org/10.1016/j.jbusres.2008.01.009
Dien, J. (2012). Applying principal components analysis to event-related
potentials: A tutorial. Developmental Neuropsychology,
37(6), 497–517. https://doi.org/10.1080/87565641.2012.697503
Digitale, J. C., Martin, J. N., & Glymour, M. M. (2022). Tutorial on
directed acyclic graphs. Journal of Clinical Epidemiology,
142, 264–267. https://doi.org/10.1016/j.jclinepi.2021.08.001
Dinno, A. (2014). Gently clarifying the application of
Horn’s parallel analysis to principal component analysis
versus factor analysis. http://archives.pdx.edu/ds/psu/10527
Dombrowski, S. C., McGill, R. J., & Morgan, G. B. (2021). Monte
Carlo modeling of contemporary intelligence test
(IQ) factor structure: Implications for IQ
assessment, interpretation, and theory. Assessment,
28(3), 977–993. https://doi.org/10.1177/1073191119869828
Dorans, N. J. (2017). Contributions to the quantitative assessment of
item, test, and score fairness. In R. E. Bennett & M. von Davier
(Eds.), Advancing human assessment (pp. 201–230). Springer,
Cham.
Dubois, J., & Adolphs, R. (2016). Building a science of individual
differences from fMRI. Trends in Cognitive Sciences,
20(6), 425–443. https://doi.org/10.1016/j.tics.2016.03.014
Dueber, D. (2019). dmacs: Measurement
nonequivalence effect size calculator. https://github.com/ddueber/dmacs
Dumenci, L. (2024). Principles of psychological assessment, with applied
examples in R. By Isaac T. Petersen, Chapman and Hall/CRC, 2024, ISBN:
9781032413068 https://www.routledge.com/Principles-of-psychological-assessment-with-applied-examples-in-R/Petersen/p/book/9781032413068.
Biometrics, 80(4). https://doi.org/10.1093/biomtc/ujae133
Duncan, G. J., Engel, M., Claessens, A., & Dowsett, C. J. (2014).
Replication and robustness in developmental research. Developmental
Psychology, 50(11), 2417–2425. https://doi.org/10.1037/a0037996
Dunkley, D. M., Segal, Z. V., & Blankstein, K. R. (2019). Cognitive
assessment: Issues and methods. In K. S. Dobson & D. J. A. Dozois
(Eds.), Handbook of cognitive-behavioral therapies (4th ed.,
pp. 85–119). Guilford Press.
Dunn, T. J., Baguley, T., & Brunsden, V. (2014). From alpha to
omega: A practical solution to the pervasive problem of internal
consistency estimation. British Journal of Psychology,
105(3), 399–412. https://doi.org/10.1111/bjop.12046
Dunning, D., Heath, C., & Suls, J. M. (2004). Flawed
self-assessment: Implications for health, education, and the workplace.
Psychological Science in the Public Interest, 5,
69–106. https://doi.org/10.1111/j.1529-1006.2004.00018.x
Durbin, C. E., Wilson, S., & MacDonald, I., Angus W. (2022).
Integrating development into the research domain criteria (RDoC)
framework: Introduction to the special section. Journal of
Psychopathology and Clinical Science, 131(6), 535–541. https://doi.org/10.1037/abn0000767
Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine
learning approaches for clinical psychology and psychiatry. Annual
Review of Clinical Psychology, 14(1), 91–118. https://doi.org/10.1146/annurev-clinpsy-032816-045037
Eaton, W. W. (1980). The sociology of mental disorders.
Praeger.
Eddy, D. M. (1982). Probabilistic reasoning in clinical medicine:
Problems and opportunities. In D. Kahneman, P. Slovic, & A. Tversky
(Eds.), Judgment under uncertainty: Heuristics and biases (pp.
249–267). Cambridge University Press.
Edwards, J. R. (2011). The fallacy of formative measurement.
Organizational Research Methods, 14(2), 370–388. https://doi.org/10.1177/1094428110378369
Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction
of relationships between constructs and measures. Psychological
Methods, 5(2), 155–174. https://doi.org/10.1037/1082-989X.5.2.155
Edwards, L. M., Burkard, A. W., Adams, H. A., & Newcomb, S. A.
(2017). A mixed-method study of psychologists’ use of multicultural
assessment. Professional Psychology: Research and Practice,
48(2), 131–138. https://doi.org/10.1037/pro0000095
Einstein, A. (1934). On the method of theoretical physics.
Philosophy of Science, 1(2), 163–169. https://doi.org/10.1086/286316
Ellard, K. K., Fairholme, C. P., Boisseau, C. L., Farchione, T. J.,
& Barlow, D. H. (2010). Unified protocol for the transdiagnostic
treatment of emotional disorders: Protocol development and initial
outcome data. Cognitive and Behavioral Practice,
17(1), 88–101. https://doi.org/10.1016/j.cbpra.2009.06.002
Embretson, S. E. (1996). The new rules of measurement. Psychological
Assessment, 8, 341–349. https://doi.org/10.1037/1040-3590.8.4.341
Embretson, S. E., & Reise, S. P. (2000). Item response theory
for psychologists (Vol. 4). Lawrence Erlbaum Associates.
Epskamp, S. (2022). semPlot: Path
diagrams and visual analysis of various SEM packages’
output. https://github.com/SachaEpskamp/semPlot
Evans, S. C., & Shaughnessy, S. (2024). Emotion regulation as
central to psychopathology across childhood and adolescence: A
commentary on Nobakht et al. (2023). Journal of Child
Psychology and Psychiatry, 65(3), 354–357. https://doi.org/10.1111/jcpp.13910
Executive Board of the American Anthropological Association. (1998).
AAA statement on race. American Anthropologist,
100(3), 712–713. https://doi.org/10.1525/aa.1998.100.3.712
Exner, J. E. (1974). The Rorschach: A comprehensive
system. John Wiley & Sons.
Exner, J. E., & Erdberg, S. P. (2005). The
Rorschach, a comprehensive system: Advanced
interpretation (3rd ed., Vol. 2). John Wiley & Sons, Inc.
Fadus, M. C., Ginsburg, K. R., Sobowale, K., Halliday-Boykins, C. A.,
Bryant, B. E., Gray, K. M., & Squeglia, L. M. (2020). Unconscious
bias and the diagnosis of disruptive behavior disorders and ADHD in
african american and hispanic youth. Academic Psychiatry,
44(1), 95–102. https://doi.org/10.1007/s40596-019-01127-6
Falotico, R., & Quatto, P. (2010). On avoiding paradoxes in
assessing inter-rater agreement. Italian Journal of Applied
Statistics, 22, 151–160.
Faraone, S. V., & Tsuang, M. T. (1994). Measuring diagnostic
accuracy in the absence of a “gold standard.” American
Journal of Psychiatry, 151, 650–657. https://doi.org/10.1176/ajp.151.5.650
Farrington, D. P., & Loeber, R. (1989). Relative improvement over
chance (RIOC) and phi as measures of predictive efficiency
and strength of association in 2×2 tables. Journal of Quantitative
Criminology, 5(3), 201–213. https://doi.org/10.1007/BF01062737
Farris, C., Treat, T. A., Viken, R. J., & McFall, R. M. (2008).
Perceptual mechanisms that characterize gender differences in decoding
women’s sexual intent. Psychological Science, 19(4),
348–354. https://doi.org/10.1111/j.1467-9280.2008.02092.x
Farris, C., Viken, R. J., Treat, T. A., & McFall, R. M. (2006).
Heterosocial perceptual organization: Application of the choice model to
sexual coercion. Psychological Science (0956-7976),
17(10), 869–875. https://doi.org/10.1111/j.1467-9280.2006.01796.x
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009).
Statistical power analyses using g*power 3.1: Tests for correlation and
regression analyses. Behavior Research Methods, 41(4),
1149–1160. https://doi.org/10.3758/brm.41.4.1149
Fernández, A. L., & Abe, J. (2018). Bias in cross-cultural
neuropsychological testing: Problems and possible solutions. Culture
and Brain, 6(1), 1–35. https://doi.org/10.1007/s40167-017-0050-2
Field, A., Miles, J., & Field, Z. (2012). Discovering statistics
using r. SAGE Publications.
Fiske, D. W., & Campbell, D. T. (1992). Citations do not solve
problems. Psychological Bulletin, 112(3), 393–395. https://doi.org/10.1037/0033-2909.112.3.393
Fleck, M. S., Samei, E., & Mitroff, S. R. (2010). Generalized
“satisfaction of search”: Adverse influences on dual-target
search accuracy. Journal of Experimental Psychology: Applied,
16(1), 60–71. https://doi.org/10.1037/a0018629
Fletcher, R. R., Nakeshimana, A., & Olubeko, O. (2021). Addressing
fairness, bias, and appropriate use of artificial intelligence and
machine learning in global health. Frontiers in Artificial
Intelligence, 3(116). https://doi.org/10.3389/frai.2020.561802
Flora, D. B. (2020). Your coefficient alpha is probably wrong, but which
coefficient omega is right? A tutorial on using R to obtain
better reliability estimates. Advances in Methods and Practices in
Psychological Science, 3(4), 484–501. https://doi.org/10.1177/2515245920951747
Floyd, F. J., & Widaman, K. F. (1995). Factor analysis in the
development and refinement of clinical assessment instruments.
Psychological Assessment, 7, 286–299. https://doi.org/10.1037/1040-3590.7.3.286
Fok, C. C. T., & Henry, D. (2015). Increasing the sensitivity of
measures to change. Prevention Science, 16(7),
978–986. https://doi.org/10.1007/s11121-015-0545-z
Fontaine, N. M. G., & Petersen, I. T. (2017). Developmental
trajectories of psychopathology: An overview of approaches and
applications. In L. Centifanti & D. Williams (Eds.), The wiley
handbook of developmental psychopathology (pp. 5–28).
Wiley-Blackwell.
Forbey, J. D., & Ben-Porath, Y. S. (2007). Computerized adaptive
personality testing: A review and illustration with the MMPI-2
computerized adaptive version. Psychological Assessment,
19(1), 14–24. https://doi.org/10.1037/1040-3590.19.1.14
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation
models with unobservable variables and measurement error. Journal of
Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312
Fox, J., Weisberg, S., & Price, B. (2022). Car: Companion to
applied regression. https://CRAN.R-project.org/package=car
Frank, L. K. (1939). Projective methods for the study of personality.
Journal of Psychology, 8, 389–413. https://doi.org/10.1080/00223980.1939.9917671
Frazier, T. W., Georgiades, S., Bishop, S. L., & Hardan, A. Y.
(2014). Behavioral and cognitive characteristics of females and males
with autism in the simons simplex collection. Journal of the
American Academy of Child & Adolescent Psychiatry,
53(3), 329–340.e3. https://doi.org/10.1016/j.jaac.2013.12.004
Freese, J., & Peterson, D. (2017). Replication in social science.
Annual Review of Sociology.
Freud, S. (1911). Psycho-analytic notes on an autobiographical account
of a case of paranoia (dementia paranoides). In J. Strachey (Ed.),
The standard edition of the complete psychological works of
Sigmund Freud: The case of
Schreber, papers on technique and other works,
Vol. 12 (1911–1913) (pp. 1–82).
Fried, E. I. (2022). Studying mental health problems as systems, not
syndromes. Current Directions in Psychological Science,
31(6), 500–508. https://doi.org/10.1177/09637214221114089
Furr, R. M. (2017). Psychometrics: An introduction. SAGE
publications.
Furr, R. M., & Heuckeroth, S. (2019). The “quantifying
construct validity” procedure: Its role, value, interpretations,
and computation. Assessment, 26(4), 555–566. https://doi.org/10.1177/1073191118820638
Galatzer-Levy, I. R., & Bryant, R. A. (2013). 636,120 ways to have
posttraumatic stress disorder. Perspectives on Psychological
Science, 8(6), 651–662. https://doi.org/10.1177/1745691613504115
Galatzer-Levy, I. R., & Onnela, J.-P. (2023). Machine learning and
the digital measurement of psychological health. Annual Review of
Clinical Psychology, 19, 133–154. https://doi.org/10.1146/annurev-clinpsy-080921-073212
Gambrill, E. (2014). The diagnostic and statistical manual of mental
disorders as a major form of dehumanization in the modern world.
Research on Social Work Practice, 24(1), 13–36. https://doi.org/10.1177/1049731513499411
Gandrud, C. (2020). Reproducible research with R and
R studio (3rd ed.). CRC Press. https://www.routledge.com/Reproducible-Research-with-R-and-RStudio/Gandrud/p/book/9780367143985
Garb, H. N. (1997). Race bias, social class bias, and gender bias in
clinical judgment. Clinical Psychology: Science and Practice,
4(2), 99–120. https://doi.org/10.1111/j.1468-2850.1997.tb00104.x
Garb, H. N. (2005). Clinical judgment and decision making. Annual
Review of Clinical Psychology, 1, 67–89. https://doi.org/10.1146/annurev.clinpsy.1.102803.143810
Garb, H. N. (2007). Computer-administered interviews and rating scales.
Psychological Assessment, 19(1), 4–13. https://doi.org/10.1037/1040-3590.19.1.4
Garb, H. N., & Wood, J. M. (2019). Methodological advances in
statistical prediction. Psychological Assessment,
31(12), 1456–1466. https://doi.org/10.1037/pas0000673
Garb, H. N., Wood, J. M., Lilienfeld, S. O., & Nezworski, M. T.
(2005). Roots of the Rorschach controversy. Clinical
Psychology Review, 25(1), 97–118. https://doi.org/10.1016/j.cpr.2004.09.002
Garber, J., & Weersing, V. R. (2010). Comorbidity of anxiety and
depression in youth: Implications for treatment and prevention.
Clinical Psychology: Science and Practice, 17(4),
293–306. https://doi.org/10.1111/j.1468-2850.2010.01221.x
Geldhof, G. J., Preacher, K. J., & Zyphur, M. J. (2014). Reliability
estimation in a multilevel confirmatory factor analysis framework.
Psychological Methods, 19(1), 72–91. https://doi.org/10.1037/a0032138
Gelman, A., & Loken, E. (2013). The garden of forking paths: Why
multiple comparisons can be a problem, even when there is no
“fishing expedition” or “p-hacking” and the
research hypothesis was posited ahead of time. Department of
Statistics, Columbia University.
Gibbons, R. D., Weiss, D. J., Frank, E., & Kupfer, D. (2016).
Computerized adaptive diagnosis and testing of mental health disorders.
Annual Review of Clinical Psychology, 12(1), 83–104.
https://doi.org/10.1146/annurev-clinpsy-021815-093634
Gilovich, T., Vallone, R., & Tversky, A. (1985). The hot hand in
basketball: On the misperception of random sequences. Cognitive
Psychology, 17(3), 295–314. https://doi.org/10.1016/0010-0285(85)90010-6
Gipps, C., & Stobart, G. (2009). Fairness in assessment. In C.
Wyatt-Smith & J. J. Cumming (Eds.), Educational assessment in
the 21st century: Connecting theory and practice (pp. 105–118).
Springer Netherlands. https://doi.org/10.1007/978-1-4020-9964-9_6
Girard, J. M., & Cohn, J. F. (2016). A primer on observational
measurement. Assessment, 23(4), 404–413. https://doi.org/10.1177/1073191116635807
Gneiting, T., & Walz, E.-M. (2021). Receiver operating
characteristic (ROC) movies, universal ROC (UROC) curves, and
coefficient of predictive ability (CPA). Machine Learning. https://doi.org/10.1007/s10994-021-06114-3
Gonzalez, O., & Pelham, W. E. (2021). When does differential item
functioning matter for screening? A method for empirical evaluation.
Assessment, 28(2), 446–456. https://doi.org/10.1177/1073191120913618
Goodwin, L. D., & Leech, N. L. (2006). Understanding correlation:
Factors that affect the size of r. The Journal of
Experimental Education, 74(3), 249–266. https://doi.org/10.3200/JEXE.74.3.249-266
Gottfredson, L. S. (1994). The science and politics of race-norming.
American Psychologist, 49(11), 955–963. https://doi.org/10.1037/0003-066X.49.11.955
Gottfredson, L. S. (1997). Mainstream science on intelligence: An
editorial with 52 signatories, history, and bibliography.
Intelligence, 24(1), 13–23.
Gottfredson, N. C., Cole, V. T., Giordano, M. L., Bauer, D. J., Hussong,
A. M., & Ennett, S. T. (2019). Simplifying the implementation of
modern scale scoring methods with an automated R package:
Automated moderated nonlinear factor analysis (aMNLFA). Addictive Behaviors,
94, 65–73. https://doi.org/10.1016/j.addbeh.2018.10.031
Graham, J. M. (2006). Congeneric and (essentially) tau-equivalent
estimates of score reliability: What they are and how to use them.
Educational and Psychological Measurement, 66(6),
930–944. https://doi.org/10.1177/0013164406288165
Graham, J. R., Veltri, C. O. C., & Lee, T. T. C. (2022). MMPI
instruments: Assessing personality and psychopathology (6th ed.).
Oxford University Press.
Graham, J., Olchowski, A., & Gilreath, T. (2007). How many
imputations are really needed? Some practical clarifications of multiple
imputation theory. Prevention Science, 8(3), 206–213.
https://doi.org/10.1007/s11121-007-0070-9
Granziol, U., Brancaccio, A., Pizziconi, G., Spangaro, M., Gentili, F.,
Bosia, M., Gregori, E., Luperini, C., Pavan, C., Santarelli, V.,
Cavallaro, R., Cremonese, C., Favaro, A., Rossi, A., Vidotto, G., &
Spoto, A. (2022). On the implementation of computerized adaptive
observations for psychological assessment. Assessment,
29(2), 225–241. https://doi.org/10.1177/1073191120960215
Green, S. B., & Yang, Y. (2015). Evaluation of dimensionality in the
assessment of internal consistency reliability: Coefficient alpha and
omega coefficients. Educational Measurement: Issues and
Practice, 34(4), 14–20. https://doi.org/10.1111/emip.12100
Greenberg, D. M., Warrier, V., Allison, C., & Baron-Cohen, S.
(2018). Testing the empathizing–systemizing theory of sex differences
and the extreme male brain theory of autism in half a million people.
Proceedings of the National Academy of Sciences,
115(48), 12152–12157. https://doi.org/10.1073/pnas.1811032115
Grove, W. M., & Meehl, P. E. (1996). Comparative efficiency of
informal (subjective, impressionistic) and formal (mechanical,
algorithmic) prediction procedures: The clinical–statistical
controversy. Psychology, Public Policy, and Law, 2(2),
293–323. https://doi.org/10.1037/1076-8971.2.2.293
Grove, W. M., Zald, D. H., Lebow, B. S., Snitz, B. E., & Nelson, C.
(2000). Clinical versus mechanical prediction: A meta-analysis.
Psychological Assessment, 12(1), 19–30. https://doi.org/10.1037/1040-3590.12.1.19
Gunn, H. J., Grimm, K. J., & Edwards, M. C. (2020). Evaluation of
six effect size measures of measurement non-invariance for continuous
outcomes. Structural Equation Modeling: A Multidisciplinary
Journal, 27(4), 503–514. https://doi.org/10.1080/10705511.2019.1689507
Gwet, K. L. (2008). Computing inter-rater reliability and its variance
in the presence of high agreement. British Journal of Mathematical
and Statistical Psychology, 61(1), 29–48. https://doi.org/10.1348/000711006X126600
Gwet, K. L. (2021a). Handbook of inter-rater reliability:
The definitive guide to measuring the extent of agreement
among raters, Vol. 1: Analysis of categorical
ratings (5th ed.). AgreeStat Analytics.
Gwet, K. L. (2021b). Handbook of inter-rater reliability:
The definitive guide to measuring the extent of agreement
among raters, Vol. 2: Analysis of quantitative
ratings (5th ed.). AgreeStat Analytics.
Hagquist, C. (2019). Explaining differential item functioning focusing
on the crucial role of external information – an example from the
measurement of adolescent mental health. BMC Medical Research
Methodology, 19(1), 185. https://doi.org/10.1186/s12874-019-0828-3
Hagquist, C., & Andrich, D. (2017). Recent advances in analysis of
differential item functioning in health research using the
Rasch model. Health and Quality of Life Outcomes,
15(1), 181. https://doi.org/10.1186/s12955-017-0755-0
Hall, G. C. N., Bansal, A., & Lopez, I. R. (1999). Ethnicity and
psychopathology: A meta-analytic review of 31 years of comparative
MMPI/MMPI-2 research. Psychological Assessment, 11(2),
186–197. https://doi.org/10.1037/1040-3590.11.2.186
Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. P. P. (2015). A
critique of the cross-lagged panel model. Psychological
Methods, 20(1), 102–116. https://doi.org/10.1037/a0038889
Han, K., Colarelli, S. M., & Weed, N. C. (2019). Methodological and
statistical advances in the consideration of cultural diversity in
assessment: A critical review of group classification and measurement
invariance testing. Psychological Assessment, 31(12),
1481–1496. https://doi.org/10.1037/pas0000731
Hancock, G. R., & French, B. F. (2013). Power analysis in structural
equation modeling. In Structural equation modeling: A second course,
2nd ed. (pp. 117–159). IAP Information Age Publishing.
Hardin, A. M., Chang, J. C.-J., Fuller, M. A., & Torkzadeh, G.
(2011). Formative measurement and academic research: In search of
measurement theory. Educational and Psychological Measurement,
71(2), 281–305. https://doi.org/10.1177/0013164410370208
Harrell, F. (2015). Regression modeling strategies: With
applications to linear models, logistic and ordinal regression, and
survival analysis. Springer.
Harrell, Jr., F. E. (2021). rms:
Regression modeling strategies. https://CRAN.R-project.org/package=rms
Hayes, A. F., & Coutts, J. J. (2020). Use omega rather than Cronbach’s alpha for estimating reliability. but….
Communication Methods and Measures, 14(1), 1–24. https://doi.org/10.1080/19312458.2020.1718629
Hayes, S. C., Nelson, R. O., & Jarrett, R. B. (1987). The treatment
utility of assessment: A functional approach to evaluating assessment
quality. American Psychologist, 42, 963–974. https://doi.org/10.1037/0003-066X.42.11.963
Haynes, S. N. (2001). Clinical applications of analogue behavioral
observation: Dimensions of psychometric evaluation. Psychological
Assessment, 13(1), 73–85. https://doi.org/10.1037/1040-3590.13.1.73
Haynes, S. N., & Yoshioka, D. T. (2007). Clinical assessment
applications of ambulatory biosensors. Psychological
Assessment, 19(1), 44–57. https://doi.org/10.1037/1040-3590.19.1.44
Hays, P. A. (2016). Addressing cultural complexities in practice:
Assessment, diagnosis, and therapy. American Psychological
Association.
Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox:
Why robust cognitive tasks do not produce reliable individual
differences. Behavior Research Methods, 50(3),
1166–1186. https://doi.org/10.3758/s13428-017-0935-1
Helms, J. E. (2006). Fairness is not validity or cultural bias in
racial-group assessment: A quantitative perspective. American
Psychologist, 61(8), 845–859. https://doi.org/10.1037/0003-066X.61.8.845
Helms, J. E., Jernigan, M., & Mascher, J. (2005). The meaning of
race in psychology and how to change it: A methodological perspective.
American Psychologist, 60(1), 27–36. https://doi.org/10.1037/0003-066X.60.1.27
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). Most people are
not WEIRD. Nature, 466(7302), 29–29. https://doi.org/10.1038/466029a
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion
for assessing discriminant validity in variance-based structural
equation modeling. Journal of the Academy of Marketing Science,
43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Hertzog, C., & Nesselroade, J. R. (2003). Assessing psychological
change in adulthood: An overview of methodological issues.
Psychology and Aging, 18(4), 639–657. https://doi.org/10.1037/0882-7974.18.4.639
Himmelstein, P. H., Woods, W. C., & Wright, A. G. C. (2019). A
comparison of signal- and event-contingent ambulatory assessment of
interpersonal behavior and affect in social situations.
Psychological Assessment, 31(7), 952–960. https://doi.org/10.1037/pas0000718
Hinshaw, S. P., & Nigg, J. T. (1999). Behavior rating scales in the
assessment of disruptive behavior problems in childhood. In D. Shaffer,
C. P. Lucas, & J. E. Richters (Eds.), Diagnostic assessment in
child and adolescent psychopathology. (pp. 91–126). The Guilford
Press.
Hoch, S. J. (1985). Counterfactual reasoning and accuracy in predicting
personal events. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 11(4), 719–731. https://doi.org/10.1037/0278-7393.11.1-4.719
Holmlund, T. B., Foltz, P. W., Cohen, A. S., Johansen, H. D., Sigurdsen,
R., Fugelli, P., Bergsager, D., Cheng, J., Bernstein, J., Rosenfeld, E.,
& Elvevåg, B. (2019). Moving psychological assessment out of the
controlled laboratory setting: Practical challenges. Psychological
Assessment, 31(3), 292–303. https://doi.org/10.1037/pas0000647
Hough, S. E. (2016). Predicting the unpredictable: The tumultuous
science of earthquake prediction. Princeton University Press.
Hove, D. ten, Jorgensen, T. D., & Ark, L. A. van der. (2022).
Interrater reliability for multilevel data: A generalizability theory
approach. Psychological Methods, 27(4), 650–666. https://doi.org/10.1037/met0000391
Howell, R. D., Breivik, E., & Wilcox, J. B. (2007). Reconsidering
formative measurement. Psychological Methods, 12(2),
205–218. https://doi.org/10.1037/1082-989X.12.2.205
Hsiao, Y.-Y., Kwok, O.-M., & Lai, M. H. C. (2018). Evaluation of two
methods for modeling measurement errors when testing interaction effects
with observed composite scores. Educational and Psychological
Measurement, 78(2), 181–202. https://doi.org/10.1177/0013164416679877
Huebner, A., & Lucht, M. (2019). Generalizability theory in
R. Practical Assessment, Research &
Evaluation, 24(5), 2. https://doi.org/10.7275/5065-gc10
Hunsley, J., Lee, C. M., Wood, J. M., & Taylor, W. (2015).
Controversial and questionable assessment techniques. In S. O.
Lilienfeld, S. J. Lynn, & J. M. Lohr (Eds.), Science and
pseudoscience in clinical psychology (2nd ed., pp. 42–82). The
Guilford Press.
Hunsley, J., & Mash, E. J. (2007). Evidence-based assessment.
Annual Review of Clinical Psychology, 3, 29–51. https://doi.org/10.1146/annurev.clinpsy.3.022806.091419
Hurlburt, R. T. (1997). Randomly sampling thinking in the natural
environment. Journal of Consulting and Clinical Psychology,
65(6), 941–949. https://doi.org/10.1037/0022-006X.65.6.941
Hussong, A. M., Bauer, D. J., Giordano, M. L., & Curran, P. J.
(2020). Harmonizing altered measures in integrative data analysis: A
methods analogue study. Behavior Research Methods. https://doi.org/10.3758/s13428-020-01472-7
Hussong, A. M., Curran, P. J., & Bauer, D. J. (2013). Integrative
data analysis in clinical psychology research. Annual Review of
Clinical Psychology, 9(1), 61–89. https://doi.org/10.1146/annurev-clinpsy-050212-185522
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting:
Principles and practice (2nd ed.). OTexts.
Jaccard, J., & Wan, C. K. (1995). Measurement error in the analysis
of interaction effects between continuous predictors using multiple
regression: Multiple indicator and structural equation approaches.
Psychological Bulletin, 117(2), 348–357. https://doi.org/10.1037/0033-2909.117.2.348
Jacinto, S. B., Lewis, C. C., Braga, J. N., & Scott, K. (2018). A
conceptual model for generating and validating in-session clinical
judgments. Psychotherapy Research, 28(1), 91–105. https://doi.org/10.1080/10503307.2016.1169329
Jensen, A. R. (1980). Précis of bias in mental testing. Behavioral
and Brain Sciences, 3(3), 325–333. https://doi.org/10.1017/S0140525X00005161
Jiang, Z. (2018). Using the linear mixed-effect model framework to
estimate generalizability variance components in R.
Methodology, 14(3), 133–142. https://doi.org/10.1027/1614-2241/a000149
John, L. K., Loewenstein, G., & Prelec, D. (2012). Measuring the
prevalence of questionable research practices with incentives for truth
telling. Psychological Science, 23(5), 524–532. https://doi.org/10.1177/0956797611430953
Johnson, J. E. V., & Bruce, A. C. (2001). Calibration of subjective
probability judgments in a naturalistic setting. Organizational
Behavior and Human Decision Processes, 85(2), 265–290. https://doi.org/10.1006/obhd.2000.2949
Johnson, P. E. (2022). rockchalk:
Regression estimation and presentation. https://CRAN.R-project.org/package=rockchalk
Jonson, J. L., & Geisinger, K. F. (2022). Fairness in
educational and psychological testing: Examining theoretical, research,
practice, and policy implications of the 2014 standards. American
Educational Research Association,.
Jorgensen, T. D., Kite, B. A., Chen, P.-Y., & Short, S. D. (2018).
Permutation randomization methods for testing measurement equivalence
and detecting differential item functioning in multiple-group
confirmatory factor analysis. Psychological Methods,
23(4), 708–728. https://doi.org/10.1037/met0000152
Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel,
Y. (2021). semTools: Useful tools for
structural equation modeling. https://github.com/simsem/semTools/wiki
Kagan, J. (1969). The three faces of continuity in human development. In
D. A. Goslin (Ed.), Handbook of socialization theory and
research (pp. 983–1002). Rand McNally.
Kahneman, D. (2011). Thinking, fast and slow. Farrar,
Straus, and Giroux.
Kaiser, H. F. (1960). The application of electronic computers to factor
analysis. Educational and Psychological Measurement,
20(1), 141–151. https://doi.org/10.1177/001316446002000116
Kaiser, H. F. (1970). A second generation little jiffy.
Psychometrika, 35(4), 401–415. https://doi.org/10.1007/BF02291817
Kaiser, H. F. (1974). An index of factorial simplicity.
Psychometrika, 39(1), 31–36. https://doi.org/10.1007/BF02291575
Kaiser, H. F., & Rice, J. (1974). Little jiffy, mark IV.
Educational and Psychological Measurement, 34(1),
111–117. https://doi.org/10.1177/001316447403400115
Karch, J. D. (in press). lavaangui: A
web-based graphical interface for specifying lavaan models by drawing path diagrams.
Structural Equation Modeling: A Multidisciplinary Journal. https://doi.org/10.1080/10705511.2024.2420678
Kazdin, A. E. (1995). Preparing and evaluating research reports.
Psychological Assessment, 7(3), 228–237. https://doi.org/10.1037/1040-3590.7.3.228
Kelley, K., & Pornprasertmanit, S. (2016). Confidence intervals for
population reliability coefficients: Evaluation of methods,
recommendations, and software for composite measures. Psychological
Methods, 21(1), 69–92. https://doi.org/10.1037/a0040086
Kenny, D. A. (1979). Correlation and causality. New York:
Wiley.
Keren, G. (1987). Facing uncertainty in the game of bridge: A
calibration study. Organizational Behavior and Human Decision
Processes, 39(1), 98–114. https://doi.org/10.1016/0749-5978(87)90047-1
Kessler, R. C., Bossarte, R. M., Luedtke, A., Zaslavsky, A. M., &
Zubizarreta, J. R. (2020). Suicide prediction models: A critical review
of recent research with recommendations for the way forward.
Molecular Psychiatry, 25(1), 168–179. https://doi.org/10.1038/s41380-019-0531-0
Kievit, R. A., Brandmaier, A. M., Ziegler, G., Harmelen, A.-L. van,
Mooij, S. M. M. de, Moutoussis, M., Goodyer, I., Bullmore, E., Jones, P.
B., Fonagy, P., Lindenberger, U., & Dolan, R. J. (2018).
Developmental cognitive neuroscience using latent change score models: A
tutorial and applications. Developmental Cognitive
Neuroscience, 33, 99–117. https://doi.org/10.1016/j.dcn.2017.11.007
Kievit, R., Frankenhuis, W., Waldorp, L., & Borsboom, D. (2013).
Simpson’s paradox in psychological science: A practical guide.
Frontiers in Psychology, 4(513). https://doi.org/10.3389/fpsyg.2013.00513
Klein, D. F., & Cleary, T. A. (1969). Platonic true scores: Further
comment. Psychological Bulletin, 71(4), 278–280. https://doi.org/10.1037/h0026852
Kline, R. B. (2023). Principles and practice of structural equation
modeling (5th ed.). Guilford Publications.
Kline, R. B. (2024). How to evaluate local fit (residuals) in large
structural equation models. International Journal of
Psychology, 59(6), 1293–1306. https://doi.org/10.1002/ijop.13252
Koehler, D. J., Brenner, L., & Griffin, D. (2002). The calibration
of expert judgment: Heuristics and biases beyond the laboratory. In T.
Gilovich, D. Griffin, & D. Kahneman (Eds.), Heuristics and
biases: The psychology of intuitive judgment. Cambridge University
Press.
Koriat, A., Lichtenstein, S., & Fischhoff, B. (1980). Reasons for
confidence. Journal of Experimental Psychology: Human Learning and
Memory, 6(2), 107–118. https://doi.org/10.1037/0278-7393.6.2.107
Korotitsch, W. J., & Nelson-Gray, R. O. (1999). An overview of
self-monitoring research in assessment and treatment. Psychological
Assessment, 11(4), 415–425. https://doi.org/10.1037/1040-3590.11.4.415
Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R.,
Bagby, R. M., Brown, T. A., Carpenter, W. T., Caspi, A., Clark, L. A.,
Eaton, N. R., Forbes, M. K., Forbush, K. T., Goldberg, D., Hasin, D.,
Hyman, S. E., Ivanova, M. Y., Lynam, D. R., Markon, K., … Zimmerman, M.
(2017). The hierarchical taxonomy of psychopathology (HiTOP): A
dimensional alternative to traditional nosologies. Journal of
Abnormal Psychology, 126(4), 454–477. https://doi.org/10.1037/abn0000258
Kotov, R., Krueger, R. F., Watson, D., Cicero, D. C., Conway, C. C.,
DeYoung, C. G., Eaton, N. R., Forbes, M. K., Hallquist, M. N., Latzman,
R. D., Mullins-Sweatt, S. N., Ruggero, C. J., Simms, L. J., Waldman, I.
D., Waszczuk, M. A., & Wright, A. G. C. (2021). The hierarchical
taxonomy of psychopathology (HiTOP): A quantitative nosology based on
consensus of evidence. Annual Review of Clinical Psychology,
17(1), 83–108. https://doi.org/10.1146/annurev-clinpsy-081219-093304
Kozak, M. J., & Cuthbert, B. N. (2016). The NIMH research domain
criteria initiative: Background, issues, and pragmatics.
Psychophysiology, 53(3), 286–297. https://doi.org/10.1111/psyp.12518
Kriegman, L. S., & Kriegman, G. (1965). The PaTE
report: A new psychodynamic and therapeutic evaluative procedure.
The Psychiatric Quarterly, 39(1), 646–674. https://doi.org/10.1007/BF01569493
Krosnick, J. A. (1999). Survey research. Annual Review of
Psychology, 50, 537–567. https://doi.org/10.1146/annurev.psych.50.1.537
Krueger, R. F., Nichol, P. E., Hicks, B. M., Markon, K. E., Patrick, C.
J., lacono, W. G., & McGue, M. (2004). Using latent trait modeling
to conceptualize an alcohol problems continuum. Psychological
Assessment, 16(2), 107–119. https://doi.org/10.1037/1040-3590.16.2.107
Kuhn, M. (2022). caret: Classification
and regression training. https://github.com/topepo/caret/
Kuncel, N. R., & Hezlett, S. A. (2010). Fact and fiction in
cognitive ability testing for admissions and hiring decisions.
Current Directions in Psychological Science, 19(6),
339–345. https://doi.org/10.1177/0963721410389459
Kundu, S., Aulchenko, Y. S., & Janssens, A. C. J. W. (2020).
PredictABEL: Assessment of risk prediction models.
https://CRAN.R-project.org/package=PredictABEL
Lai, M. H. C. (2021). Adjusting for measurement noninvariance with
alignment in growth modeling. Multivariate Behavioral Research,
1–18. https://doi.org/10.1080/00273171.2021.1941730
Larson, M. J., & Carbine, K. A. (2017). Sample size calculations in
human electrophysiology (EEG and ERP) studies: A systematic review and
recommendations for increased rigor. International Journal of
Psychophysiology, 111, 33–41. https://doi.org/10.1016/j.ijpsycho.2016.06.015
Lee, K., Bull, R., & Ho, R. M. H. (2013). Developmental changes in
executive functioning. Child Development, 84(6),
1933–1953. https://doi.org/10.1111/cdev.12096
Lee Meeuw Kjoe, P. R., Agelink van Rentergem, J. A., Vermeulen, I. E.,
& Schagen, S. B. (2021). How to correct for computer experience in
online cognitive testing? Assessment, 28(5),
1247–1255. https://doi.org/10.1177/1073191120911098
Lee, S., & Hershberger, S. (1990). A simple rule for generating
equivalent models in covariance structure modeling. Multivariate
Behavioral Research, 25(3), 313–334. https://doi.org/10.1207/s15327906mbr2503_4
Lek, K. M., & Van De Schoot, R. (2018). A comparison of the single,
conditional and person-specific standard error of measurement: What do
they measure and when to use them? Frontiers in Applied Mathematics
and Statistics, 4(40). https://doi.org/10.3389/fams.2018.00040
Lele, S. R., Keim, J. L., & Solymos, P. (2019).
ResourceSelection: Resource selection (probability)
functions for use-availability data. https://github.com/psolymos/ResourceSelection
Leong, F. T. L., & Kalibatseva, Z. (2016). Threats to cultural
validity in clinical diagnosis and assessment: Illustrated with the case
of Asian Americans. In N. Zane, G. Bernal,
& F. T. L. Leong (Eds.), Evidence-based psychological practice
with ethnic minorities: Culturally informed research and clinical
strategies (pp. 57–74). American Psychological Association.
Lewis-Fernández, R., Aggarwal, N. K., Bäärnhielm, S., Rohlof, H.,
Kirmayer, L. J., Weiss, M. G., Jadhav, S., Hinton, L., Alarcón, R. D.,
Bhugra, D., Groen, S., Dijk, R. van, Qureshi, A., Collazos, F.,
Rousseau, C., Caballero, L., Ramos, M., & Lu, F. (2014). Culture and
psychiatric evaluation: Operationalizing cultural formulation for DSM-5.
Psychiatry: Interpersonal and Biological Processes,
77(2), 130–154. https://doi.org/10.1521/psyc.2014.77.2.130
Lilienfeld, S. O. (2007). Psychological treatments that cause harm.
Perspectives on Psychological Science, 2(1), 53–70. https://doi.org/10.1111/j.1745-6916.2007.00029.x
Lilienfeld, S. O. (2017). Psychology’s replication crisis and the grant
culture: Righting the ship. Perspectives on Psychological
Science, 12(4), 660–664. https://doi.org/10.1177/1745691616687745
Lilienfeld, S. O., Sauvigne, K., Lynn, S. J., Latzman, R. D., Cautin,
R., & Waldman, I. D. (2015). Fifty psychological and psychiatric
terms to avoid: A list of inaccurate, misleading, misused, ambiguous,
and logically confused words and phrases. Frontiers in
Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01100
Lilienfeld, S. O., Wood, J. M., & Garb, H. N. (2000). The scientific
status of projective techniques. Psychological Science in the Public
Interest, 1, 27–66. https://doi.org/10.1111/1529-1006.002
Lindhiem, O., Petersen, I. T., Mentch, L. K., & Youngstrom, E. A.
(2020). The importance of calibration in clinical psychology.
Assessment, 27(4), 840–854. https://doi.org/10.1177/1073191117752055
Lindhiem, O., Yu, L., Grasso, D. J., Kolko, D. J., & Youngstrom, E.
A. (2015). Adapting the posterior probability of diagnosis index to
enhance evidence-based screening: An application to ADHD in primary
care. Assessment, 22(2), 198–207. https://doi.org/10.1177/1073191114540748
Lindzey, G. (1952). Thematic apperception test: Interpretive assumptions
and related empirical evidence. Psychological Bulletin,
49, 1–25. https://doi.org/10.1037/h0062363
Little, T. D. (2013). Longitudinal structural equation
modeling. The Guilford Press.
Little, T. D., Preacher, K. J., Selig, J. P., & Card, N. A. (2007).
New developments in latent variable panel analyses of longitudinal data.
International Journal of Behavioral Development,
31(4), 357–365. https://doi.org/10.1177/0165025407077757
Little, T. D., Slegers, D. W., & Card, N. A. (2006). A non-arbitrary
method of identifying and scaling latent variables in SEM and MACS
models. Structural Equation Modeling, 13(1), 59–72. https://doi.org/10.1207/s15328007sem1301_3
Liu, Y., Millsap, R. E., West, S. G., Tein, J.-Y., Tanaka, R., &
Grimm, K. J. (2017). Testing measurement invariance in longitudinal data
with ordered-categorical measures. Psychological Methods,
22(3), 486–506. https://doi.org/10.1037/met0000075
Lobbestael, J., Leurgans, M., & Arntz, A. (2011). Inter-rater
reliability of the Structured Clinical
Interview for DSM-IV Axis
I Disorders (SCID I) and
Axis II Disorders (SCID
II). Clinical Psychology & Psychotherapy,
18(1), 75–79. https://doi.org/10.1002/cpp.693
Loevinger, J. (1957). Objective tests as instruments of psychological
theory. Psychological Reports, 3(3), 635–694. https://doi.org/10.2466/pr0.1957.3.3.635
Loken, E., & Gelman, A. (2017). Measurement error and the
replication crisis. Science, 355(6325), 584–585. https://doi.org/10.1126/science.aal3618
Lubke, G. H., McArtor, D. B., Boomsma, D. I., & Bartels, M. (2018).
Genetic and environmental contributions to the development of childhood
aggression. Developmental Psychology, 54(1), 39–50. https://doi.org/10.1037/dev0000403
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., &
Makowski, D. (2021). performance: An
R package for assessment, comparison and testing of
statistical models. Journal of Open Source Software,
6(60), 3139. https://doi.org/10.21105/joss.03139
Lupien, S. J., Sasseville, M., François, N., Giguère, C. E.,
Boissonneault, J., Plusquellec, P., Godbout, R., Xiong, L., Potvin, S.,
Kouassi, E., & Lesage, A. (2017). The
DSM5/RDoC debate on the future of mental
health research: Implication for studies on human stress and
presentation of the signature bank. Stress, 20(1),
2–18. https://doi.org/10.1080/10253890.2017.1286324
Lutz, W., Schwartz, B., & Delgadillo, J. (2022). Measurement-based
and data-informed psychological therapy. Annual Review of Clinical
Psychology, 18(1), 71–98. https://doi.org/10.1146/annurev-clinpsy-071720-014821
Lysell, H., Dahlin, M., Viktorin, A., Ljungberg, E., D’Onofrio, B. M.,
Dickman, P., & Runeson, B. (2018). Maternal suicide – register based
study of all suicides occurring after delivery in sweden 1974–2009.
PLOS ONE, 13(1), e0190133. https://doi.org/10.1371/journal.pone.0190133
MacCallum, R. C., & Austin, J. T. (2000). Applications of structural
equation modeling in psychological research. Annual Review of
Psychology, 51(1), 201–226. https://doi.org/10.1146/annurev.psych.51.1.201
Magis, D. (2013). A note on the item information function of the
four-parameter logistic model. Applied Psychological
Measurement, 37(4), 304–315. https://doi.org/10.1177/0146621613475471
Makridakis, S., Hogarth, R. M., & Gaba, A. (2009). Forecasting and
uncertainty in the economic and business world. International
Journal of Forecasting, 25(4), 794–812. https://doi.org/10.1016/j.ijforecast.2009.05.012
Manly, J. J. (2005). Advantages and disadvantages of separate norms for
African Americans. The Clinical
Neuropsychologist, 19(2), 270–275. https://doi.org/10.1080/13854040590945346
Manly, J. J., & Echemendia, R. J. (2007). Race-specific norms: Using
the model of hypertension to understand issues of race, culture, and
education in neuropsychology. Archives of Clinical
Neuropsychology, 22(3), 319–325. https://doi.org/10.1016/j.acn.2007.01.006
Markon, K. E. (2019). Bifactor and hierarchical models: Specification,
inference, and interpretation. Annual Review of Clinical
Psychology, 15(1), 51–69. https://doi.org/10.1146/annurev-clinpsy-050718-095522
Markon, K. E., Chmielewski, M., & Miller, C. J. (2011). The
reliability and validity of discrete and continuous measures of
psychopathology: A quantitative review. Psychological Bulletin,
137(5), 856–879. https://doi.org/10.1037/a0023678
Markus, K. A. (2018). Three conceptual impediments to developing scale
theory for formative scales. Methodology, 14(4),
156–164. https://doi.org/10.1027/1614-2241/a000154
Marsh, H. W., Morin, A. J. S., Parker, P. D., & Kaur, G. (2014).
Exploratory structural equation modeling: An integration of the best
features of exploratory and confirmatory factor analysis. Annual
Review of Clinical Psychology, 10(1), 85–110. https://doi.org/10.1146/annurev-clinpsy-032813-153700
Masche, J. G., & Dulmen, M. H. M. van. (2004). Advances in
disentangling age, cohort, and time effects: No quadrature of the
circle, but a help. Developmental Review, 24(3),
322–342. https://doi.org/10.1016/j.dr.2004.04.002
Matthews, M., Abdullah, S., Murnane, E., Voida, S., Choudhury, T., Gay,
G., & Frank, E. (2016). Development and evaluation of a
smartphone-based measure of social rhythms for bipolar disorder.
Assessment, 23(4), 472–483. https://doi.org/10.1177/1073191116656794
McArdle, J. J., & Grimm, K. J. (2011). An empirical example of
change analysis by linking longitudinal item response data from multiple
tests. In A. A. von Davier (Ed.), Statistical models for test
equating, scaling, and linking (pp. 71–88). Springer Science &
Business Media.
McArdle, J. J., Grimm, K. J., Hamagami, F., Bowles, R. P., &
Meredith, W. (2009). Modeling life-span growth curves of cognition using
longitudinal data with multiple samples and changing scales of
measurement. Psychological Methods, 14(2), 126–149. https://doi.org/10.1037/a0015857
McClelland, D. C. (1973). Testing for competence rather than for
“intelligence.” American Psychologist,
28, 1–14. https://doi.org/10.1037/h0034092
McClelland, D. C. (1994). The knowledge-testing-educational complex
strikes back. American Psychologist, 49(1), 66–69. https://doi.org/10.1037/0003-066X.49.1.66
McClelland, G. H., & Judd, C. M. (1993). Statistical difficulties of
detecting interactions and moderator effects. Psychological
Bulletin, 114(2), 376–390. https://doi.org/10.1037/0033-2909.114.2.376
McFall, R. M. (1991). Manifesto for a science of clinical psychology.
The Clinical Psychologist, 44(6), 75–91.
McFall, R. M. (2000). Elaborate reflections on a simple manifesto.
Applied & Preventive Psychology, 9(1), 5–21. https://doi.org/10.1016/s0962-1849(05)80035-6
McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some
intraclass correlation coefficients. Psychological Methods,
1(1), 30–46. https://doi.org/10.1037/1082-989X.1.1.30
McNally, R. J. (2021). Network analysis of psychopathology:
Controversies and challenges. Annual Review of Clinical
Psychology, 17(1), 31–53. https://doi.org/10.1146/annurev-clinpsy-081219-092850
McNeish, D. (2018). Thanks coefficient alpha, we’ll take it from here.
Psychological Methods, 23(3), 412–433. https://doi.org/10.1037/met0000144
McNeish, D. (2026). How do psychologists determine whether a measurement
scale is good? A quarter-century of scale validation with
Hu & Bentler (1999). Annual Review of
Psychology, 77, 8.1–8.25. https://doi.org/10.1146/annurev-psych-121924-104021
McNeish, D., & Wolf, M. G. (2023). Dynamic fit index cutoffs for
confirmatory factor analysis models. Psychological Methods,
28(1), 61–88. https://doi.org/10.1037/met0000425
McNiel, D. E., & Binder, R. L. (1995). Correlates of accuracy in the
assessment of psychiatric inpatients’ risk of violence. American
Journal of Psychiatry, 152(6), 901–906. https://doi.org/10.1176/ajp.152.6.901
Meade, A. W. (2010). A taxonomy of effect size measures for the
differential functioning of items and scales. Journal of Applied
Psychology, 95(4), 728–743. https://doi.org/10.1037/a0018966
Meehl, P. E. (1957). When shall we use our heads instead of the formula?
Journal of Counseling Psychology, 4(4), 268–273. https://doi.org/10.1037/h0047554
Meehl, P. E. (1978). Theoretical risks and tabular asterisks:
Sir Karl, Sir
Ronald, and the slow progress of soft psychology.
Journal of Consulting and Clinical Psychology, 46(4),
806–834. https://doi.org/10.1037/0022-006x.46.4.806
Meehl, P. E. (1986). Causes and effects of my disturbing little book.
Journal of Personality Assessment, 50(3), 370–375. https://doi.org/10.1207/s15327752jpa5003_6
Meehl, P. E., & Rosen, A. (1955). Antecedent probability and the
efficiency of psychometric signs, patterns, or cutting scores.
Psychological Bulletin, 52(3), 194–216. https://doi.org/10.1037/h0048070
Melikyan, Z. A., Agranovich, A. V., & Puente, A. E. (2019). Fairness
in psychological testing. In G. Goldstein, D. N. Allen, & J. DeLuca
(Eds.), Handbook of psychological assessment (fourth edition)
(pp. 551–572). Academic Press. https://doi.org/10.1016/B978-0-12-802203-0.00018-3
Metz, C. E., Goodenough, D. J., & Rossmann, K. (1973). Evaluation of
receiver operating characteristic curve data in terms of information
theory, with applications in radiography. Radiology,
109(2), 297–303. https://doi.org/10.1148/109.2.297
Meyer, G. J., Erard, R. E., Erdberg, P., Mihura, J. L., & Viglione,
D. J. (2011). Rorschach Performance Assessment System:
Administration, coding, interpretation, and technical manual.
Rorschach Performance Asessement Systems LLC.
Miller, G. A., Elbert, T., Sutton, B. P., & Heller, W. (2007).
Innovative clinical assessment technologies: Challenges and
opportunities in neuroimaging. Psychological Assessment,
19(1), 58–73. https://doi.org/10.1037/1040-3590.19.1.58
Miller, G. A., Rockstroh, B. S., Hamilton, H. K., & Yee, C. M.
(2016). Psychophysiology as a core strategy in RDoC.
Psychophysiology, 53(3), 410–414. https://doi.org/10.1111/psyp.12581
Miller, J. B., & Sanjurjo, A. (2014). A cold shower for the hot hand
fallacy. Innocenzo Gasparini Institute for Economic Research.
https://repec.unibocconi.it/igier/igi/wp/2014/518.pdf
Miller, J. L., Vaillancourt, T., & Boyle, M. H. (2009). Examining
the heterotypic continuity of aggression using teacher reports: Results
from a national Canadian study. Social
Development, 18(1), 164–180. https://doi.org/10.1111/j.1467-9507.2008.00480.x
Millsap, R. E. (2011). Statistical approaches to measurement
invariance. Taylor & Francis.
Moeller, J. (2015). A word on standardization in longitudinal studies:
don’t. Frontiers in Psychology, 6(1389), 1–4. https://doi.org/10.3389/fpsyg.2015.01389
Moffitt, T. E. (1993). Adolescence-limited and life-course-persistent
antisocial behavior: A developmental taxonomy. Psychological
Review, 100(4), 674–701. https://doi.org/10.1037/0033-295X.100.4.674
Moffitt, T. E. (2006a). A review of research on the taxonomy of
life-course persistent versus adolescence-limited antisocial behavior.
Taking Stock: The Status of Criminological Theory, 15,
277–312.
Moffitt, T. E. (2006b). Life-course-persistent versus
adolescence-limited antisocial behavior. In D. C. D. J. Cohen (Ed.),
Developmental psychopathology, vol 3: Risk, disorder, and adaptation
(2nd ed.) (pp. 570–598). John Wiley & Sons Inc.
Morgan, C. D., & Murray, H. A. (1935). A method for investigating
fantasies: The thematic apperception test. Archives of Neurology
& Psychiatry, 34(2), 289–306. https://doi.org/10.1001/archneurpsyc.1935.02250200049005
Morley, S. K., Brito, T. V., & Welling, D. T. (2018). Measures of
model performance based on the log accuracy ratio. Space
Weather, 16(1), 69–88. https://doi.org/10.1002/2017SW001669
Mullins-Sweatt, S. N., & Widiger, T. A. (2009). Clinical utility and
DSM-V. Psychological Assessment, 21(3),
302–312. https://doi.org/10.1037/a0016607
Murphy, A. H., & Winkler, R. L. (1984). Probability forecasting in
meterology. Journal of the American Statistical Association,
79(387), 489–500. https://doi.org/10.2307/2288395
Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte
Carlo study to decide on sample size and determine power.
Structural Equation Modeling: A Multidisciplinary Journal,
9(4), 599–620. https://doi.org/10.1207/s15328007sem0904_8
Muthén, L. K., & Muthén, B. O. (2019). Mplus version 8.4.
Muthén & Muthén.
Myers, K., & Winters, N. C. (2002). Ten-year review of rating
scales. I: Overview of scale functioning,
psychometric properties, and selection. Journal of the American
Academy of Child & Adolescent Psychiatry, 41(2),
114–122. https://doi.org/10.1097/00004583-200202000-00004
Nagy, T. F. (2011). Essential ethics for psychologists: A primer for
understanding and mastering core issues (pp. x, 252–x, 252).
American Psychological Association.
Nelson-Gray, R. O. (2003). Treatment utility of psychological
assessment. Psychological Assessment, 15(4), 521–531.
https://doi.org/10.1037/1040-3590.15.4.521
Newsom, J. T. (2015). Longitudinal structural equation modeling: A
comprehensive introduction. Routledge.
Ng, J. C. K., & Chan, W. (2020). Latent moderation analysis: A
factor score approach. Structural Equation Modeling: A
Multidisciplinary Journal, 27(4), 629–648. https://doi.org/10.1080/10705511.2019.1664304
Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can
know: Verbal reports on mental processes. Psychological Review,
84(3), 231–259. https://doi.org/10.1037/0033-295x.84.3.231
Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric
theory (3rd ed.). McGraw-Hill.
Nye, C. D., Bradburn, J., Olenick, J., Bialko, C., & Drasgow, F.
(2019). How big are my effects? Examining the magnitude of effect sizes
in studies of measurement equivalence. Organizational Research
Methods, 22(3), 678–709. https://doi.org/10.1177/1094428118761122
Oberski, D. L. (2014). Evaluating sensitivity of parameters of interest
to measurement invariance in latent variable models. Political
Analysis, 22(1), 45–60. https://doi.org/10.1093/pan/mpt014
Oberski, D. L., Vermunt, J. K., & Moors, G. B. D. (2015). Evaluating
measurement invariance in categorical data latent variable models with
the EPC-interest. Political Analysis, 23(4), 550–563.
https://doi.org/10.1093/pan/mpv020
Okazaki, S., & Sue, S. (1995). Methodological issues in assessment
research with ethnic minorities. Psychological Assessment,
7(3), 367–375. https://doi.org/10.1037/1040-3590.7.3.367
Open Science Collaboration. (2015). Estimating the reproducibility of
psychological science. Science, 349(6251). https://doi.org/10.1126/science.aac4716
Orth, U., Clark, D. A., Donnellan, M. B., & Robins, R. W. (2021).
Testing prospective effects in longitudinal research: Comparing seven
competing cross-lagged models. Journal of Personality and Social
Psychology, 120(4), 1013–1034. https://doi.org/10.1037/pspp0000358
Oskamp, S. (1965). Overconfidence in case-study judgments. Journal
of Consulting Psychology, 29(3), 261–265. https://doi.org/10.1037/h0022125
Park, D. C., & Bischof, G. N. (2013). The aging mind:
Neuroplasticity in response to cognitive training. Dialogues in
Clinical Neuroscience, 15(1), 109–119. https://doi.org/10.31887/DCNS.2013.15.1/dpark
Patrick, C. J., Iacono, W. G., & Venables, N. C. (2019).
Incorporating neurophysiological measures into clinical assessments:
Fundamental challenges and a strategy for addressing them.
Psychological Assessment, 31(7), 952–960. https://doi.org/10.1037/pas0000713
Patterson, G. R. (1993). Orderly change in a stable world: The
antisocial trait as a chimera. Journal of Consulting and Clinical
Psychology, 61(6), 911–919. https://doi.org/10.1037/0022-006X.61.6.911
Paulus, J. K., & Kent, D. M. (2020). Predictably unequal:
Understanding and addressing concerns that algorithmic clinical
prediction may increase health disparities. Npj Digital
Medicine, 3(1), 99. https://doi.org/10.1038/s41746-020-0304-9
Pearl, J. (2013). Linear models: A useful “microscope" for causal
analysis. Journal of Causal Inference, 1(1), 155–170.
https://doi.org/10.1515/jci-2013-0003
Peters, G.-J. (2014). The alpha and the omega of scale reliability and
validity: Why and how to abandon Cronbach’s
alpha and the route towards more comprehensive assessment of scale
quality. European Health Psychologist, 16(2), 56–69.
Petersen, I. T. (2024a). Assessing externalizing behaviors in
school-aged children: Implications for school and community
providers. https://doi.org/10.17077/rep.006639
Petersen, I. T. (2024b). Reexamining developmental continuity and
discontinuity in the 21st century: Better aligning behaviors, functions,
and mechanisms. Developmental Psychology, 60(11),
1992–2007. https://doi.org/10.1037/dev0001657
Petersen, I. T. (2025). petersenlab: A
collection of R functions by the Petersen
Lab. https://doi.org/10.32614/CRAN.package.petersenlab
Petersen, I. T., Apfelbaum, K. S., & McMurray, B. (2024). Adapting
open science and pre-registration to longitudinal research. Infant
and Child Development, 33(1), e2315. https://doi.org/10.1002/icd.2315
Petersen, I. T., Bates, J. E., D’Onofrio, B. M., Coyne, C. A., Lansford,
J. E., Dodge, K. A., Pettit, G. S., & Van Hulle, C. A. (2013).
Language ability predicts the development of behavior problems in
children. Journal of Abnormal Psychology, 122(2),
542–557. https://doi.org/10.1037/a0031963
Petersen, I. T., Bates, J. E., Dodge, K. A., Lansford, J. E., &
Pettit, G. S. (2015). Describing and predicting developmental profiles
of externalizing problems from childhood to adulthood. Development
and Psychopathology, 27(3), 791–818. https://doi.org/10.1017/S0954579414000789
Petersen, I. T., Bates, J. E., McQuillan, M. E., Hoyniak, C. P.,
Staples, A. D., Rudasill, K. M., Molfese, D. L., & Molfese, V. J.
(2021). Heterotypic continuity of inhibitory control in early childhood:
Evidence from four widely used measures. Developmental
Psychology, 57(11), 1755–1771. https://doi.org/10.1037/dev0001025
Petersen, I. T., Choe, D. E., & LeBeau, B. (2020). Studying a moving
target in development: The challenge and opportunity of heterotypic
continuity. Developmental Review, 58, 100935. https://doi.org/10.1016/j.dr.2020.100935
Petersen, I. T., Hoyniak, C. P., McQuillan, M. E., Bates, J. E., &
Staples, A. D. (2016). Measuring the development of inhibitory control:
The challenge of heterotypic continuity. Developmental Review,
40, 25–71. https://doi.org/10.1016/j.dr.2016.02.001
Petersen, I. T., & LeBeau, B. (2021). Language ability in the
development of externalizing behavior problems in childhood. Journal
of Educational Psychology, 113(1), 68–85. https://doi.org/10.1037/edu0000461
Petersen, I. T., & LeBeau, B. (2022). Creating a developmental scale
to chart the development of psychopathology with different informants
and measures across time. Journal of Psychopathology and Clinical
Science, 131(6), 611–625. https://doi.org/10.1037/abn0000649
Petersen, I. T., LeBeau, B., & Choe, D. E. (2021). Creating a
developmental scale to account for heterotypic continuity in
development: A simulation study. Child Development,
92(1), e1–e19. https://doi.org/10.1111/cdev.13433
Petersen, I. T., Lindhiem, O., LeBeau, B., Bates, J. E., Pettit, G. S.,
Lansford, J. E., & Dodge, K. A. (2018). Development of internalizing
problems from adolescence to emerging adulthood: Accounting for
heterotypic continuity with vertical scaling. Developmental
Psychology, 54(3), 586–599. https://doi.org/10.1037/dev0000449
Petscher, Y., Justice, L. M., & Hogan, T. (2018). Modeling the early
language trajectory of language development when the measures change and
its relation to poor reading comprehension. Child Development,
89(6), 2136–2156. https://doi.org/10.1111/cdev.12880
Piasecki, T. M., Hufford, M. R., Solhan, M., & Trull, T. J. (2007).
Assessing clients in their natural environments with electronic diaries:
Rationale, benefits, limitations, and barriers. Psychological
Assessment, 19(1), 25–43. https://doi.org/10.1037/1040-3590.19.1.25
Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012).
Sources of method bias in social science research and recommendations on
how to control it. Annual Review of Psychology, 63(1),
539–569. https://doi.org/10.1146/annurev-psych-120710-100452
Pornprasertmanit, S., Miller, P., Schoemann, A., & Jorgensen, T. D.
(2021). simsem: SIMulated
structural equation modeling. http://www.simsem.org
Posner, K., Brown, G. K., Stanley, B., Brent, D. A., Yershova, K. V.,
Oquendo, M. A., Currier, G. W., Melvin, G. A., Greenhill, L., Shen, S.,
& Mann, J. J. (2011). The Columbia–Suicide Severity Rating
Scale: Initial validity and internal consistency findings from
three multisite studies with adolescents and adults. American
Journal of Psychiatry, 168(12), 1266–1277. https://doi.org/10.1176/appi.ajp.2011.10111704
Putnam, S. P., Rothbart, M. K., & Gartstein, M. A. (2008). Homotypic
and heterotypic continuity of fine-grained temperament during infancy,
toddlerhood, and early childhood. Infant & Child
Development, 17(4), 387–405. https://doi.org/10.1002/ICD.582
Putnick, D. L., & Bornstein, M. H. (2016). Measurement invariance
conventions and reporting: The state of the art and future directions
for psychological research. Developmental Review, 41,
71–90. https://doi.org/10.1016/j.dr.2016.06.004
R Core Team. (2022). R: A language and environment for
statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Raiche, G., & Magis, D. (2020). nFactors: Parallel analysis and other non
graphical solutions to the Cattell scree test. https://CRAN.R-project.org/package=nFactors
Raugh, I. M., Chapman, H. C., Bartolomeo, L. A., Gonzalez, C., &
Strauss, G. P. (2019). A comprehensive review of psychophysiological
applications for ecological momentary assessment in psychiatric
populations. Psychological Assessment, 31(3), 304–317.
https://doi.org/10.1037/pas0000651
Raykov, T. (2001). Bias of coefficient α for fixed congeneric measures with
correlated errors. 25(1), 69–76. https://doi.org/10.1177/01466216010251005
Raykov, T., & Marcoulides, G. A. (2001). Can there be infinitely
many models equivalent to a given covariance structure model?
Structural Equation Modeling: A Multidisciplinary Journal,
8(1), 142–149. https://doi.org/10.1207/S15328007SEM0801_8
Raykov, T., & Marcoulides, G. A. (2019). Thanks coefficient alpha,
we still need you! Educational and Psychological Measurement,
79(1), 200–210. https://doi.org/10.1177/0013164417725127
Raykov, T., Marcoulides, G. A., Harrison, M., & Zhang, M. (2020). On
the dependability of a popular procedure for studying measurement
invariance: A cause for concern? Structural Equation Modeling: A
Multidisciplinary Journal, 27(4), 649–656. https://doi.org/10.1080/10705511.2019.1610409
Reise, S. P., & Waller, N. G. (2009). Item response theory and
clinical measurement. Annual Review of Clinical Psychology,
5(1), 27–48. https://doi.org/10.1146/annurev.clinpsy.032408.153553
Revelle, W. (2022). psych: Procedures
for psychological, psychometric, and personality research. https://personality-project.org/r/psych/
Revelle, W., & Condon, D. M. (2019). Reliability from α to ω: A tutorial. Psychological
Assessment, 31(12), 1395–1411. https://doi.org/10.1037/pas0000754
Revelle, W., & Rocklin, T. (1979). Very simple structure: An
alternative procedure for estimating the optimal number of interpretable
factors. Multivariate Behavioral Research, 14(4),
403–414. https://doi.org/10.1207/s15327906mbr1404_2
Reynolds, C. R., Altmann, R. A., & Allen, D. N. (2021). The problem
of bias in psychological assessment. In C. R. Reynolds, R. A. Altmann,
& D. N. Allen (Eds.), Mastering modern psychological testing:
Theory and methods (pp. 573–613). Springer International
Publishing. https://doi.org/10.1007/978-3-030-59455-8_15
Reynolds, C. R., & Suzuki, L. A. (2012). Bias in psychological
assessment: An empirical review and recommendations. In I. B. Weiner, J.
R. Graham, & J. A. Naglieri (Eds.), Handbook of psychology,
Vol. 10: Assessment psychology,
Part 1: Assessment issues (2nd ed., pp.
82–113).
Rice, M. E., Harris, G. T., & Lang, C. (2013). Validation of and
revision to the VRAG and SORAG: The
Violence Risk Appraisal Guide—Revised
(VRAG-R). Psychological Assessment,
25(3), 951–965. https://doi.org/10.1037/a0032878
Ridley, C. R., Hill, C. L., & Wiese, D. L. (2001). Ethics in
multicultural assessment a model of reasoned application. In D. L. Wiese
(Ed.), Handbook of multicultural assessment: Clinical,
psychological, and educational applications (p. 29).
Ridley, C. R., Li, L. C., & Hill, C. L. (1998). Multicultural
assessment: Reexamination, reconceptualization, and practical
application. The Counseling Psychologist, 26(6),
827–910. https://doi.org/10.1177/0011000098266001
Rigdon, E. E. (2010). Polychoric correlation coefficient. In N. J.
Salkind (Ed.), Encyclopedia of research design. SAGE
Publications. https://doi.org/10.4135/9781412961288
Rigdon, E. E., Becker, J.-M., & Sarstedt, M. (2019a). Factor
indeterminacy as metrological uncertainty: Implications for advancing
psychological measurement. Multivariate Behavioral Research,
54(3), 429–443. https://doi.org/10.1080/00273171.2018.1535420
Rigdon, E. E., Becker, J.-M., & Sarstedt, M. (2019b). Parceling
cannot reduce factor indeterminacy in factor analysis: A research note.
Psychometrika, 84(3), 772–780. https://doi.org/10.1007/s11336-019-09677-2
Rivera Mindt, M., Byrd, D., Saez, P., & Manly, J. (2010). Increasing
culturally competent neuropsychological services for ethnic minority
populations: A call to action. The Clinical Neuropsychologist,
24(3), 429–453. https://doi.org/10.1080/13854040903058960
Roberts, A. C., Yeap, Y. W., Seah, H. S., Chan, E., Soh, C.-K., &
Christopoulos, G. I. (2019). Assessing the suitability of virtual
reality for psychological testing. Psychological Assessment,
31(3), 318–328. https://doi.org/10.1037/pas0000663
Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez,
J.-C., & Müller, M. (2021). pROC:
Display and analyze ROC curves. http://expasy.org/tools/pROC/
Robitzsch, A. (2019). mnlfa: Moderated
nonlinear factor analysis. https://CRAN.R-project.org/package=mnlfa
Rodebaugh, T. L., Scullin, R. B., Langer, J. K., Dixon, D. J., Huppert,
J. D., Bernstein, A., Zvielli, A., & Lenze, E. J. (2016).
Unreliability as a threat to understanding psychopathology: The
cautionary tale of attentional bias. Journal of Abnormal
Psychology, 125(6), 840–851. https://doi.org/10.1037/abn0000184
Roemer, E., Schuberth, F., & Henseler, J. (2021). HTMT2–an improved
criterion for assessing discriminant validity in structural equation
modeling. Industrial Management & Data Systems,
121(12), 2637–2650. https://doi.org/10.1108/IMDS-02-2021-0082
Rönkkö, M., & Cho, E. (2020). An updated guideline for assessing
discriminant validity. Organizational Research Methods,
1094428120968614. https://doi.org/10.1177/1094428120968614
Rosseel, Y., Jorgensen, T. D., & Rockwood, N. (2022). lavaan: Latent variable analysis. https://lavaan.ugent.be
Royal, K. (2016). “Face validity” is not a legitimate type
of validity evidence! The American Journal of Surgery,
212(5), 1026–1027. https://doi.org/10.1016/j.amjsurg.2016.02.018
Ruiz, M. A., Drake, E. B., Glass, A., Marcotte, D., & Gorp, W. G.
van. (2002). Trying to beat the system: Misuse of the internet to assist
in avoiding the detection of psychological symptom dissimulation.
Professional Psychology: Research and Practice, 33(3),
294–299. https://doi.org/10.1037/0735-7028.33.3.294
Ruscio, J., & Roche, B. (2012). Determining the number of factors to
retain in an exploratory factor analysis using comparison data of known
factorial structure. Psychological Assessment, 24(2),
282–292. https://doi.org/10.1037/a0025697
Rush, A. J., First, M. B., & Blacker, D. (2009). Handbook of
psychiatric measures. American Psychiatric Publishing.
Rushton, J. P., Brainerd, C. J., & Pressley, M. (1983). Behavioral
development and construct validity: The principle of aggregation.
Psychological Bulletin, 94(1), 18–38. https://doi.org/10.1037/0033-2909.94.1.18
Russo, J. E., & Schoemaker, P. J. (1992). Managing overconfidence.
Sloan Management Review, 33(2), 7.
Sackett, P. R., Borneman, M. J., & Connelly, B. S. (2008). High
stakes testing in higher education and employment: Appraising the
evidence for validity and fairness. American Psychologist,
63, 215–227. https://doi.org/10.1037/0003-066X.63.4.215
Sackett, P. R., Schmitt, N., Ellingson, J. E., & Kabin, M. B.
(2001). High-stakes testing in employment, credentialing, and higher
education. American Psychologist, 56, 301–318. https://doi.org/10.1037/0003-066X.56.4.302
Sackett, P. R., & Wilk, S. L. (1994). Within-group norming and other
forms of score adjustment in preemployment testing. American
Psychologist, 49(11), 929–954. https://doi.org/10.1037/0003-066X.49.11.929
Sarstedt, M., Adler, S. J., Ringle, C. M., Cho, G., Diamantopoulos, A.,
Hwang, H., & Liengaard, B. D. (2024). Same model, same data, but
different outcomes: Evaluating the impact of method choices in
structural equation modeling. Journal of Product Innovation
Management, 41(6), 1100–1117. https://doi.org/10.1111/jpim.12738
Sattler, J. M., & Hoge, R. D. (2006). Assessment of children:
Behavioral, social, and clinical foundations (5th ed.). Jerome M.
Sattler, Publisher, Inc.
Sayal, K., Wyatt, L., Partlett, C., Ewart, C., Bhardwaj, A., Dubicka,
B., Marshall, T., Gledhill, J., Lang, A., Sprange, K., Thomson, L.,
Moody, S., Holt, G., Bould, H., Upton, C., Keane, M., Cox, E., James,
M., & Montgomery, A. (in press). The clinical and cost effectiveness
of a STAndardised DIagnostic
Assessment for children and adolescents with emotional
difficulties: The STADIA multi-centre randomised controlled
trial. Journal of Child Psychology and Psychiatry. https://doi.org/10.1111/jcpp.14090
Schaefer, J. D., Caspi, A., Belsky, D. W., Harrington, H., Houts, R.,
Horwood, L. J., Hussong, A., Ramrakha, S., Poulton, R., & Moffitt,
T. E. (2017). Enduring mental health: Prevalence and prediction.
Journal of Abnormal Psychology, 126(2), 212–224. https://doi.org/10.1037/abn0000232
Schaie, K. W. (1965). A general model for the study of developmental
problems. Psychological Bulletin, 64(2), 92–107. https://doi.org/10.1037/h0022371
Schaie, K. W. (2005). Developmental influences on adult
intelligence: The Seattle longitudinal study. Oxford
University Press.
Schaie, K. W., & Baltes, P. B. (1975). On sequential strategies in
developmental research. Human Development, 18(5),
384–390. https://doi.org/10.1159/000271498
Schmidt, F. L., & Hunter, J. E. (1981). Employment testing: Old
theories and new research findings. American Psychologist,
36(10), 1128–1137. https://doi.org/10.1037/0003-066X.36.10.1128
Schmidt, F. L., & Hunter, J. E. (1996). Measurement error in
psychological research: Lessons from 26 research scenarios.
Psychological Methods, 1(2), 199–223. https://doi.org/10.1037/1082-989X.1.2.199
Schneider, W. J. (2021). simstandard:
Generate standardized data. https://github.com/wjschne/simstandard
Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J.
(2006). Reporting structural equation modeling and confirmatory factor
analysis results: A review. Journal of Educational Research,
99(6), 323–337. https://doi.org/10.3200/JOER.99.6.323-338
Schuberth, F. (2023). The Henseler-Ogasawara
specification of composites in structural equation modeling: A tutorial.
Psychological Methods, 28(4), 843–859. https://doi.org/10.1037/met0000432
Schulenberg, J. E., & Maslowsky, J. (2009). Taking substance use and
development seriously: Developmentally distal and proximal influences on
adolescence drug use. Monographs of the Society for Research in
Child Development, 74(3), 121–130. https://doi.org/10.1111/j.1540-5834.2009.00544.x
Schulenberg, J. E., Patrick, M. E., Maslowsky, J., & Maggs, J. L.
(2014). The epidemiology and etiology of adolescent substance use in
developmental perspective. In M. Lewis & K. D. Rudolph (Eds.),
Handbook of developmental psychopathology (pp. 601–620).
Springer US.
Schulenberg, J. E., & Zarrett, N. R. (2006). Mental health during
emerging adulthood: Continuity and discontinuity in courses, causes, and
functions. In Emerging adults in america: Coming of age in the 21st
century. (pp. 135–172). American Psychological Association.
Sechrest, L. (1963). Incremental validity: A recommendation.
Educational and Psychological Measurement, 23,
153–158. https://doi.org/10.1177/001316446302300113
Sechrest, L., Stickle, T. R., & Stewart, M. (1998). The role of
assessment in clinical psychology. In A. Bellack, M. Hersen, & C. R.
Reynolds (Eds.), Comprehensive clinical psychology,
Vol. 4: Assessment. Pergamon.
Sellbom, M. (2019). The MMPI-2-restructured form (MMPI-2-RF): Assessment
of personality and psychopathology in the twenty-first century.
Annual Review of Clinical Psychology, 15(1), 149–177.
https://doi.org/10.1146/annurev-clinpsy-050718-095701
Sellbom, M., & Tellegen, A. (2019). Factor analysis in psychological
assessment research: Common pitfalls and recommendations.
Psychological Assessment, 31(12), 1428–1441. https://doi.org/10.1037/pas0000623
Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002).
Experimental and quasi-experimental designs for generalized causal
inference. Houghton Mifflin.
Sharp, K. L., Williams, A. J., Rhyner, K. T., & Ilardi, S. S.
(2013). The clinical interview. In K. F. Geisinger, J. F. Carlson, J.-I.
C. Hansen, N. R. Kuncel, S. P. Reise, & M. C. Rodriguez (Eds.),
APA handbook of testing and assessment in psychology,
Vol. 2: Testing and assessment in clinical and
counseling psychology (pp. 103–117). American Psychological
Association.
Shavelson, R. J., Webb, N. M., & Rawley, R. L. (1989).
Generalizability theory. American Psychologist, 44,
922–932. https://doi.org/10.1037/0003-066X.44.6.922
Shiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological
momentary assessment. Annual Review of Clinical Psychology,
4, 1–32. https://doi.org/10.1146/annurev.clinpsy.3.022806.091415
Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses
in assessing rater reliability. Psychological Bulletin,
86(2), 420–428. https://doi.org/10.1037/0033-2909.86.2.420
Shrout, P. E., & Rodgers, J. L. (2018). Psychology, science, and
knowledge construction: Broadening perspectives from the replication
crisis. Annual Review of Psychology, 69(1), 487–510.
https://doi.org/10.1146/annurev-psych-122216-011845
Sijtsma, K. (2008). On the use, the misuse, and the very limited
usefulness of cronbach’s alpha. Psychometrika, 74(1),
107. https://doi.org/10.1007/s11336-008-9101-0
Silver, N. (2012). The signal and the noise: Why so many predictions
fail–but some don’t. Penguin.
Silverberg, N. D., & Millis, S. R. (2009). Impairment versus
deficiency in neuropsychological assessment: Implications for ecological
validity. Journal of the International Neuropsychological
Society, 15(1), 94–102. https://doi.org/10.1017/S1355617708090139
Simms, L. J., Zelazny, K., Williams, T. F., & Bernstein, L. (2019).
Does the number of response options matter? Psychometric perspectives
using personality questionnaire data. Psychological Assessment,
31(4), 557–566. https://doi.org/10.1037/pas0000648
Skala, D. (2008). Overconfidence in psychology and finance–an
interdisciplinary literature review. Bank i Kredyt, 4,
33–50.
Slack, M. K., & Draugalis, J., Jolaine R. (2001). Establishing the
internal and external validity of experimental studies. American
Journal of Health-System Pharmacy, 58(22), 2173–2181. https://doi.org/10.1093/ajhp/58.22.2173
Smedley, A., & Smedley, B. D. (2005). Race as biology is fiction,
racism as a social problem is real: Anthropological and historical
perspectives on the social construction of race. American
Psychologist, 60(1), 16–26. https://doi.org/10.1037/0003-066X.60.1.16
Smith, G. T., Atkinson, E. A., Davis, H. A., Riley, E. N., &
Oltmanns, J. R. (2020). The general factor of psychopathology.
Annual Review of Clinical Psychology, 16(1), 75–98. https://doi.org/10.1146/annurev-clinpsy-071119-115848
Smith, G. T., McCarthy, D. M., & Anderson, K. G. (2000). On the sins
of short-form development. Psychological Assessment,
12(1), 102–111. https://doi.org/10.1037/1040-3590.12.1.102
Sobell, L. C., & Sobell, M. B. (2008). Timeline followback (TLFB).
In A. J. Rush Jr., M. B. First, & D. Blacker (Eds.), Handbook of
psychiatric measures (2nd ed., pp. 466–468). American Psychiatric
Publishing.
Sommers-Flanagan, J., & Sommers-Flanagan, R. (2016). Clinical
interviewing. Wiley.
Somoza, E., Soutullo-Esperon, L., & Mossman, D. (1989). Evaluation
and optimization of diagnostic tests using receiver operating
characteristic analysis and information theory. International
Journal of Bio-Medical Computing, 24(3), 153–189. https://doi.org/10.1016/0020-7101(89)90029-9
Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection
theory measures. Behavior Research Methods, Instruments, &
Computers, 31(1), 137–149. https://doi.org/10.3758/bf03207704
Stanton, K., McDonnell, C. G., Hayden, E. P., & Watson, D. (2020).
Transdiagnostic approaches to psychopathology measurement:
Recommendations for measure selection, data analysis, and participant
recruitment. Journal of Abnormal Psychology, 129(1),
21–28. https://doi.org/10.1037/abn0000464
Staples, A. D., Bates, J. E., Petersen, I. T., McQuillan, M. E., &
Hoyniak, C. (2019). Measuring sleep in young children and their mothers:
Identifying actigraphic sleep composites. International Journal of
Behavioral Development, 43(3), 278–285. https://doi.org/10.1177/0165025419830236
Sternberg, R. J., Grigorenko, E. L., & Kidd, K. K. (2005).
Intelligence, race, and genetics. American Psychologist,
60(1), 46–59. https://doi.org/10.1037/0003-066x.60.1.46
Stevens, R. J., & Poppe, K. K. (2020). Validation of clinical
prediction models: What does the “calibration slope” really
measure? Journal of Clinical Epidemiology, 118, 93–99.
https://doi.org/10.1016/j.jclinepi.2019.09.016
Stevens, S. S. (1946). On the theory of scales of measurement.
Science, 103(2684), 677–680. https://doi.org/10.1126/science.103.2684.677
Steyerberg, E. W., & Vergouwe, Y. (2014). Towards better clinical
prediction models: Seven steps for development and an ABCD for
validation. European Heart Journal, 35(29), 1925–1931.
https://doi.org/10.1093/eurheartj/ehu207
Steyerberg, E. W., Vickers, A. J., Cook, N. R., Gerds, T., Gonen, M.,
Obuchowski, N., Pencina, M. J., & Kattan, M. W. (2010). Assessing
the performance of prediction models: A framework for traditional and
novel measures. Epidemiology, 21(1), 128–138. https://doi.org/10.1097/EDE.0b013e3181c30fb2
Stone, A. A., Schneider, S., & Smyth, J. M. (2023). Evaluation of
pressing issues in ecological momentary assessment. Annual Review of
Clinical Psychology, 19(1), 107–131. https://doi.org/10.1146/annurev-clinpsy-080921-083128
Strauss, M. E., & Smith, G. T. (2009). Construct validity: Advances
in theory and methodology. Annual Review of Clinical
Psychology, 5(1), 1–25. https://doi.org/10.1146/annurev.clinpsy.032408.153639
Sullivan, H. S. (1970). The psychiatric interview. Norton.
Summerfeldt, L. J., Kloosterman, P. H., & Antony, M. M. (2010).
Structured and semistructured diagnostic interviews. In M. M. Antony
& D. H. Barlow (Eds.), Handbook of assessment and treatment
planning for psychological disorders (2nd ed., pp. 95–137).
Guilford Press.
Suzuki, L. A., Onoue, M. A., & Hill, J. S. (2013). Clinical
assessment: A multicultural perspective. In K. F. Geisinger, J. F.
Carlson, J.-I. C. Hansen, N. R. Kuncel, S. P. Reise, & M. C.
Rodriguez (Eds.), APA handbook of testing and assessment in
psychology, Vol. 2: Testing and assessment in
clinical and counseling psychology (pp. 193–212). American
Psychological Association.
Swets, J. A., Dawes, R. M., & Monahan, J. (2000). Psychological
science can improve diagnostic decisions. Psychological Science in
the Public Interest, 1, 1–26. https://doi.org/10.1111/1529-1006.001
Tackett, J. L., Brandes, C. M., King, K. M., & Markon, K. E. (2019).
Psychology’s replication crisis and clinical psychological science.
Annual Review of Clinical Psychology, 15(1), 579–604.
https://doi.org/10.1146/annurev-clinpsy-050718-095710
Tackett, J. L., Brandes, C. M., & Reardon, K. W. (2019). Leveraging
the open science framework in clinical psychological assessment
research. Psychological Assessment, 31(12), 1386–1394.
https://doi.org/10.1037/pas0000583
Tackett, J. L., Lang, J. W. B., Markon, K. E., & Herzhoff, K.
(2019). A correlated traits, correlated methods model for thin-slice
child personality assessment. Psychological Assessment,
31(4), 545–556. https://doi.org/10.1037/pas0000635
Tervalon, M., & Murray-Garcia, J. (1998). Cultural humility versus
cultural competence: A critical distinction in defining physician
training outcomes in multicultural education. Journal of Health Care
for the Poor and Underserved, 9(2), 117–125.
Tetlock, P. E. (2017). Expert political judgment: How good is it?
How can we know? - New edition. Princeton University
Press.
Textor, J., van der Zander, B., & Ankan, A. (2021). dagitty: Graphical analysis of structural causal
models. https://CRAN.R-project.org/package=dagitty
Textor, J., Zander, B. van der, Gilthorpe, M. S., Liśkiewicz, M., &
Ellison, G. T. (2017). Robust causal inference using directed acyclic
graphs: The R package “dagitty”.
International Journal of Epidemiology, 45(6),
1887–1894. https://doi.org/10.1093/ije/dyw341
Thomas, M. L. (2019). Advances in applications of item response theory
to clinical assessment. Psychological Assessment,
31(12), 1442–1455. https://doi.org/10.1037/pas0000597
Thorndike, R. L. (1971). Concepts of culture-fairness. Journal of
Educational Measurement, 8(2), 63–70. https://doi.org/10.1111/j.1745-3984.1971.tb00907.x
Tiego, J., Martin, E. A., DeYoung, C. G., Hagan, K., Cooper, S. E.,
Pasion, R., Satchell, L., Shackman, A. J., Bellgrove, M. A., Fornito,
A., Abend, R., Goulter, N., Eaton, N. R., Kaczkurkin, A. N., & and,
R. N. (2023). Precision behavioral phenotyping as a strategy for
uncovering the biological correlates of psychopathology. Nature
Mental Health, 1, 304–315. https://doi.org/10.1038/s44220-023-00057-5
Tofallis, C. (2015). A better measure of relative prediction accuracy
for model selection and model estimation. Journal of the Operational
Research Society, 66(8), 1352–1362. https://doi.org/10.1057/jors.2014.103
Tong, Y., & Kolen, M. J. (2007). Comparisons of methodologies and
results in vertical scaling for educational achievement tests.
Applied Measurement in Education, 20(2), 227–253. https://doi.org/10.1080/08957340701301207
Toomey, R. B., Syvertsen, A. K., & Shramko, M. (2018). Transgender
adolescent suicide behavior. Pediatrics, 142(4). https://doi.org/10.1542/peds.2017-4218
Trafimow, D. (2015). A defense against the alleged unreliability of
difference scores. Cogent Mathematics, 2(1), 1064626.
https://doi.org/10.1080/23311835.2015.1064626
Trafimow, D., Hyman, M. R., & Kostyk, A. (in press). Enhancing
predictive power by unamalgamating multi-item scales. Psychological
Methods. https://doi.org/10.1037/met0000599
Treat, T. A., McFall, R. M., Viken, R. J., Kruschke, J. K., Nosofsky, R.
M., & Wang, S. S. (2007). Clinical cognitive science: Applying
quantitative models of cognitive processing to examine cognitive aspects
of psychopathology. In R. W. J. Neufeld (Ed.), Advances in clinical
cognitive science: Formal modeling of processes and symptoms (pp.
179–205). American Psychological Association.
Treat, T. A., & Viken, R. J. (2023). Measuring test performance with
signal detection theory techniques. In H. Cooper, M. N. Coutanche, L. M.
McMullen, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA
handbook of research methods in psychology: Foundations, planning,
measures, and psychometrics (2nd ed., Vol. 1, pp. 837–858).
American Psychological Association.
Treiblmaier, H., Bentler, P. M., & Mair, P. (2011). Formative
constructs implemented via common factors. Structural Equation
Modeling: A Multidisciplinary Journal, 18(1), 1–17. https://doi.org/10.1080/10705511.2011.532693
Trull, T. J., & Ebner-Priemer, U. (2013). Ambulatory assessment.
Annual Review of Clinical Psychology, 9, 151–176. https://doi.org/10.1146/annurev-clinpsy-050212-185510
Trull, T. J., & Ebner-Priemer, U. W. (2020). Ambulatory assessment
in psychopathology research: A review of recommended reporting
guidelines and current practices. Journal of Abnormal
Psychology, 129(1), 56–63. https://doi.org/10.1037/abn0000473
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty:
Heuristics and biases. Science, 185(4157), 1124–1131.
https://doi.org/10.1126/science.185.4157.1124
Ursenbach, J., O’Connell, M. E., Neiser, J., Tierney, M. C., Morgan, D.,
Kosteniuk, J., & Spiteri, R. J. (2019). Scoring algorithms for a
computer-based cognitive screening tool: An illustrative example of
overfitting machine learning approaches and the impact on estimates of
classification accuracy. Psychological Assessment,
31(11), 1377–1382. https://doi.org/10.1037/pas0000764
Van De Schoot, R., Kluytmans, A., Tummers, L., Lugtig, P., Hox, J.,
& Muthen, B. (2013). Facing off with scylla and charybdis: A
comparison of scalar, partial, and the novel possibility of approximate
measurement invariance. Frontiers in Psychology,
4(770). https://doi.org/10.3389/fpsyg.2013.00770
Van De Schoot, R., Schmidt, P., De Beuckelaer, A., Lek, K., &
Zondervan-Zwijnenburg, M. (2015). Editorial: Measurement invariance.
Frontiers in Psychology, 6(1064). https://doi.org/10.3389/fpsyg.2015.01064
van der Nest, G., Lima Passos, V., Candel, M. J. J. M., & van
Breukelen, G. J. P. (2020). An overview of mixture modelling for latent
evolutions in longitudinal data: Modelling approaches, fit statistics
and software. Advances in Life Course Research, 43,
100323. https://doi.org/10.1016/j.alcr.2019.100323
Vaz, S., Falkmer, T., Passmore, A. E., Parsons, R., & Andreou, P.
(2013). The case for using the repeatability coefficient when
calculating test–retest reliability. PLOS ONE, 8(9),
e73990. https://doi.org/10.1371/journal.pone.0073990
Vispoel, W. P., Hong, H., & Lee, H. (2023). Benefits of doing
generalizability theory analyses within structural equation modeling
frameworks: Illustrations using the Rosenberg self-esteem
scale. Structural Equation Modeling: A Multidisciplinary
Journal, 1–17. https://doi.org/10.1080/10705511.2023.2187734
Vispoel, W. P., Lee, H., Xu, G., & Hong, H. (2022). Integrating
bifactor models into a generalizability theory based structural equation
modeling framework. The Journal of Experimental Education,
1–21. https://doi.org/10.1080/00220973.2022.2092833
Vispoel, W. P., Morris, C. A., & Kilinc, M. (2018). Applications of
generalizability theory and their relations to classical test theory and
structural equation modeling. Psychological Methods,
23(1), 1–26. https://doi.org/10.1037/met0000107
Vispoel, W. P., Morris, C. A., & Kilinc, M. (2019). Using
generalizability theory with continuous latent response variables.
Psychological Methods, 24(2), 153–178. https://doi.org/10.1037/met0000177
Voorhees, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016).
Discriminant validity testing in marketing: An analysis, causes for
concern, and proposed remedies. Journal of the Academy of Marketing
Science, 44(1), 119–134. https://doi.org/10.1007/s11747-015-0455-4
Wainer, H. (1976). Estimating coefficients in linear models: It don’t
make no nevermind. Psychological Bulletin, 83(2),
213–217. https://doi.org/10.1037/0033-2909.83.2.213
Wakschlag, L. S., Tolan, P. H., & Leventhal, B. L. (2010). Research
review: “Ain’t misbehavin”: Towards a
developmentally-specified nosology for preschool disruptive behavior.
Journal of Child Psychology and Psychiatry, 51(1),
3–22. https://doi.org/10.1111/j.1469-7610.2009.02184.x
Wang, S., Jiao, H., & Zhang, L. (2013). Validation of longitudinal
achievement constructs of vertically scaled computerised adaptive tests:
A multiple-indicator, latent-growth modelling approach.
International Journal of Quantitative Research in Education,
1(4), 383–407. https://doi.org/10.1504/IJQRE.2013.058307
Wang, T., Merkle, E. C., & Zeileis, A. (2014). Score-based tests of
measurement invariance: Use in practice. Frontiers in
Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00438
Wang, W.-C., Shih, C.-L., & Yang, C.-C. (2009). The MIMIC method
with scale purification for detecting differential item functioning.
Educational and Psychological Measurement, 69(5),
713–731. https://doi.org/10.1177/0013164409332228
Wang, Y. A., & Rhemtulla, M. (2021). Power analysis for parameter
estimation in structural equation modeling: A discussion and tutorial.
Advances in Methods and Practices in Psychological Science,
4(1), 1–17.
Watkins, C. E., Campbell, V. L., Nieberding, R., & Hallmark, R.
(1995). Contemporary practice of psychological assessment by clinical
psychologists. Professional Psychology: Research and Practice,
26(1), 54–60. https://doi.org/10.1037/0735-7028.26.1.54
Webb, N. M., & Shavelson, R. J. (2005). Generalizability theory:
overview. In B. S. Everitt & D. C. Howell (Eds.), Encyclopedia
of statistics in behavioral science (Vol. 2, pp. 717–719). John
Wiley & Sons, Ltd.
Weems, C. F. (2008). Developmental trajectories of childhood anxiety:
Identifying continuity and change in anxious emotion. Developmental
Review, 28(4), 488–502. https://doi.org/10.1016/j.dr.2008.01.001
Wei, T., & Simko, V. (2021). R package “corrplot": Visualization of a correlation
matrix. https://github.com/taiyun/corrplot
Weintraub, S., Bauer, P. J., Zelazo, P. D., Wallner-Allen, K., Dikmen,
S. S., Heaton, R. K., Tulsky, D. S., Slotkin, J., Blitz, D. L.,
Carlozzi, N. E., Havlik, R. J., Beaumont, J. L., Mungas, D., Manly, J.
J., Borosh, B. G., Nowinski, C. J., & Gershon, R. C. (2013). I. NIH
toolbox cognition battery (CB): Introduction and pediatric data.
Monographs of the Society for Research in Child Development,
78(4), 1–15. https://doi.org/10.1111/mono.12031
Weiss, B., & Garber, J. (2003). Developmental differences in the
phenomenology of depression. Development and Psychopathology,
15(2), 403–430. https://doi.org/10.1017/S0954579403000221
Whitbourne, S. K. (2019). Longitudinal, cross-sectional, and
sequential designs in lifespan developmental psychology. Oxford
University Press.
Wicherts, J. M., & Dolan, C. V. (2010). Measurement invariance in
confirmatory factor analysis: An illustration using IQ test performance
of minorities. Educational Measurement: Issues and Practice,
29(3), 39–47. https://doi.org/10.1111/j.1745-3992.2010.00182.x
Wickham, H. (2021). tidyverse: Easily
install and load the tidyverse. https://CRAN.R-project.org/package=tidyverse
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to
the tidyverse. Journal of Open Source
Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Widiger, T. A. (2002). Personality disorders. In M. M. Antony & D.
H. Barlow (Eds.), Handbook of assessment and treatment planning for
psychological disorders (pp. 453–480). Guilford Publications.
Wiggins, J. S. (1973). Personality and prediction: Principles of
personality assessment. Addison-Wesley.
Willett, W. (2012). Correction for the effects of measurement error. In
W. Willett (Ed.), Nutritional epidemiology (3rd ed., pp.
287–304). Oxford University Press.
Williams, A. J., Botanov, Y., Kilshaw, R. E., Wong, R. E., &
Sakaluk, J. K. (2021). Potentially harmful therapies: A meta-scientific
review of evidential value. Clinical Psychology: Science and
Practice, 28(1), 5–18. https://doi.org/10.1111/cpsp.12331
Wood, J. M., Garb, H. N., Lilienfeld, S. O., & Nezworski, M. T.
(2002). Clinical assessment. Annual Review of Psychology,
53(1), 519. https://doi.org/10.1146/annurev.psych.53.100901.135136
Wood, J. M., Nezworski, M. T., Garb, H. N., & Lilienfeld, S. O.
(2001). Problems with the norms of the Comprehensive System
for the Rorschach: Methodological and conceptual
considerations. Clinical Psychology: Science and Practice,
8(3), 397–402. https://doi.org/10.1093/clipsy.8.3.397
Wood, J. M., Nezworski, M. T., & Stejskal, W. J. (1996a). The
Comprehensive System for the Rorschach: A
critical examination. Psychological Science, 7(1),
3–10. https://doi.org/10.1111/j.1467-9280.1996.tb00658.x
Wood, J. M., Nezworski, M. T., & Stejskal, W. J. (1996b). Thinking
critically about the Comprehensive System for the
Rorschach: A reply to exner. Psychological
Science, 7(1), 14–17. https://doi.org/10.1111/j.1467-9280.1996.tb00660.x
Wood, J. M., Teresa, P. M., Garb, H. N., & Lilienfeld, S. O. (2001).
The misperception of psychopathology: Problems with the norms of the
Comprehensive System for the Rorschach.
Clinical Psychology: Science and Practice, 8(3),
350–373. https://doi.org/10.1093/clipsy.8.3.350
Woody, M. L., & Gibb, B. E. (2015). Integrating NIMH
Research Domain Criteria
(RDoC) into depression research. Current Opinion in
Psychology, 4, 6–12. https://doi.org/10.1016/j.copsyc.2015.01.004
Wright, A. G. C., Gates, K. M., Arizmendi, C., Lane, S. T., Woods, W.
C., & Edershile, E. A. (2019). Focusing personality assessment on
the person: Modeling general, shared, and person specific processes in
personality and psychopathology. Psychological Assessment,
31(4), 502–515. https://doi.org/10.1037/pas0000617
Wright, A. G. C., & Woods, W. C. (2020). Personalized models of
psychopathology. Annual Review of Clinical Psychology,
16(1), 49–74. https://doi.org/10.1146/annurev-clinpsy-102419-125032
Wright, A. G. C., & Zimmermann, J. (2019). Applied ambulatory
assessment: Integrating idiographic and nomothetic principles of
measurement. Psychological Assessment, 31(12),
1467–1480. https://doi.org/10.1037/pas0000685
Yang, Y., & Land, K. C. (2013). Age-period-cohort analysis: New
models, methods, and empirical applications. Taylor & Francis.
Youngstrom, E. A., Halverson, T. F., Youngstrom, J. K., Lindhiem, O.,
& Findling, R. L. (2018). Evidence-based assessment from simple
clinical judgments to statistical learning: Evaluating a range of
options using pediatric bipolar disorder as a diagnostic challenge.
Clinical Psychological Science, 6(2), 243–265. https://doi.org/10.1177/2167702617741845
Youngstrom, E. A., & Van Meter, A. (2016). Empirically supported
assessment of children and adolescents. Clinical Psychology: Science
and Practice, 23(4), 327–347. https://doi.org/10.1111/cpsp.12172
Youngstrom, E. A., Van Meter, A., Frazier, T. W., Hunsley, J.,
Prinstein, M. J., Ong, M.-L., & Youngstrom, J. K. (2017).
Evidence-based assessment as an integrative model for applying
psychological science to guide the voyage of treatment. Clinical
Psychology: Science and Practice, 24(4), 331–363. https://doi.org/10.1111/cpsp.12207
Yu, X., Schuberth, F., & Henseler, J. (2023). Specifying composites
in structural equation modeling: A refinement of the
Henseler-Ogasawara specification.
Statistical Analysis and Data Mining: The ASA Data Science
Journal, 16(4), 348–357. https://doi.org/10.1002/sam.11608
Yudell, M., Roberts, D., DeSalle, R., & Tishkoff, S. (2016). Taking
race out of human genetics. Science, 351(6273),
564–565. https://doi.org/10.1126/science.aac4951
Zhang, J., & Mueller, S. T. (2005). A note on ROC
analysis and non-parametric estimate of sensitivity.
Psychometrika, 70(1), 203–212. https://doi.org/10.1007/s11336-003-1119-8
Zhang, X., & Savalei, V. (2024). An overview of alternative formats
to the Likert format: A comment on Wilson et
al. (2022). Psychological Methods, 29(3), 606–612. https://doi.org/10.1037/met0000631
Zieky, M. J. (2006). Fairness review in assessment. In S. M. Downing
& T. M. Haladyna (Eds.), Handbook of test development (pp.
359–376). Routledge. https://doi.org/10.4324/9780203874776.ch16
Zieky, M. J. (2013). Fairness review in assessment. In K. F. Geisinger,
B. A. Bracken, J. F. Carlson, J.-I. C. Hansen, N. R. Kuncel, S. P.
Reise, & M. C. Rodriguez (Eds.), APA handbook of testing and
assessment in psychology, Vol. 1: Test theory
and testing and assessment in industrial and organizational
psychology (pp. 293–302). American Psychological Association. https://doi.org/10.1037/14047-017
Zuckerman, M. (1990). Some dubious premises in research and theory on
racial differences: Scientific, social, and ethical issues. American
Psychologist, 45(12), 1297–1303. https://doi.org/10.1037/0003-066X.45.12.1297