I need your help!

I want your feedback to make the book better for you and other readers. If you find typos, errors, or places where the text may be improved, please let me know. The best ways to provide feedback are by GitHub or hypothes.is annotations.

Opening an issue or submitting a pull request on GitHub: https://github.com/isaactpetersen/Principles-Psychological-Assessment

Hypothesis Adding an annotation using hypothes.is. To add an annotation, select some text and then click the symbol on the pop-up menu. To see the annotations of others, click the symbol in the upper right-hand corner of the page.

Chapter 26 Reproducibility

It is important for work to be reproducible by others. Reproducibility and replicability are key goals of the open science movement (Gandrud, 2020; Open Science Collaboration, 2015; Tackett, Brandes, King, et al., 2019; Tackett, Brandes, & Reardon, 2019). To that aim, I provide information below on my setup that was used to generate the results found in this book. If you run (all of) my code in the same order with the exact same setup, you should get the same results—but let me know if not!

26.1 Session Info

Code
sessionInfo()
R version 4.4.2 (2024-10-31)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.1 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
 [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
 [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
[10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   

time zone: UTC
tzcode source: system (glibc)

attached base packages:
 [1] grid      stats4    splines   stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] mirtCAT_1.14            shiny_1.10.0            strucchange_1.5-4      
 [4] sandwich_3.1-1          zoo_1.8-12              dmacs_0.1.0.9002       
 [7] dagitty_0.3-4           nFactors_2.4.1.1        corrplot_0.95          
[10] glmnet_4.1-8            LiblineaR_2.10-24       elasticnet_1.3         
[13] lars_1.3                ordinalForest_2.4-4     ranger_0.17.0          
[16] e1071_1.7-16            randomForest_4.7-1.2    caret_7.0-1            
[19] ggrepel_0.9.6           car_3.1-3               carData_3.0-5          
[22] msir_1.3.3              ggpubr_0.6.0            gridExtra_2.3          
[25] uroc_0.1.0              PredictABEL_1.2-4       ResourceSelection_0.3-6
[28] rms_7.0-0               Hmisc_5.2-2             ROCR_1.0-11            
[31] pROC_1.18.5             magrittr_2.0.3          mirt_1.43              
[34] lattice_0.22-6          drc_3.0-1               semTools_0.5-6         
[37] nonnest2_0.5-8          quantreg_5.99.1         SparseM_1.84-2         
[40] mice_3.17.0             snow_0.4-4              simsem_0.5-16          
[43] DT_0.33                 simstandard_0.6.3       MASS_7.3-61            
[46] kableExtra_1.4.0        rockchalk_1.8.157       semPlot_1.1.6          
[49] here_1.0.1              MOTE_1.0.2              performance_0.13.0     
[52] gtheory_0.1.2           lme4_1.1-36             Matrix_1.7-1           
[55] irrNA_0.2.3             irrICC_1.0              irrCAC_1.0             
[58] psychmeta_2.7.0         lavaan_0.6-19           MBESS_4.9.3            
[61] blandr_0.6.0            psych_2.4.12            viridis_0.6.5          
[64] viridisLite_0.4.2       bookdown_0.42           rmarkdown_2.29         
[67] knitr_1.49              tinytex_0.54            lubridate_1.9.4        
[70] forcats_1.0.0           stringr_1.5.1           purrr_1.0.2            
[73] readr_2.1.5             tidyr_1.3.1             tibble_3.2.1           
[76] ggplot2_3.5.1           tidyverse_2.0.0         dplyr_1.1.4            
[79] petersenlab_1.1.0      

loaded via a namespace (and not attached):
  [1] R.methodsS3_1.8.2    vroom_1.6.5          progress_1.2.3      
  [4] kutils_1.73          nnet_7.3-19          TH.data_1.1-3       
  [7] vctrs_0.6.5          digest_0.6.37        png_0.1-8           
 [10] corpcor_1.6.10       shape_1.4.6.1        proxy_0.4-27        
 [13] deldir_2.0-4         parallelly_1.41.0    combinat_0.0-8      
 [16] permute_0.9-7        reshape_0.8.9        reshape2_1.4.4      
 [19] foreach_1.5.2        httpuv_1.6.15        withr_3.0.2         
 [22] xfun_0.50            survival_3.7-0       MatrixModels_0.5-3  
 [25] SimDesign_2.18       systemfonts_1.2.1    gtools_3.9.5        
 [28] V8_6.0.0             pbapply_1.7-2        R.oo_1.27.0         
 [31] Formula_1.2-5        prettyunits_1.2.0    promises_1.3.2      
 [34] beepr_2.0            rstatix_0.7.2        globals_0.16.3      
 [37] rstudioapi_0.17.1    pan_1.9              generics_0.1.3      
 [40] base64enc_0.1-3      curl_6.1.0           mitools_2.4         
 [43] jmvcore_2.6.3        quadprog_1.5-8       xtable_1.8-4        
 [46] OpenMx_2.21.13       evaluate_1.0.3       hms_1.1.3           
 [49] colorspace_2.1-1     polynom_1.4-1        later_1.4.1         
 [52] future.apply_1.11.3  XML_3.99-0.18        class_7.3-22        
 [55] pillar_1.10.1        nlme_3.1-166         iterators_1.0.14    
 [58] compiler_4.4.2       stringi_1.8.4        gower_1.0.2         
 [61] jomo_2.7-6           minqa_1.2.8          plyr_1.8.9          
 [64] crayon_1.5.3         abind_1.4-8          bit_4.5.0.1         
 [67] codetools_0.2-20     multcomp_1.4-26      recipes_1.1.0       
 [70] bslib_0.8.0          mime_0.12            Rcpp_1.0.14         
 [73] ez_4.4-0             qgraph_1.9.8         interp_1.1-6        
 [76] mix_1.0-13           pbivnorm_0.6.0       listenv_0.9.1       
 [79] checkmate_2.3.2      Rdpack_2.6.2         openxlsx_4.2.7.1    
 [82] ggsignif_0.6.4       lpSolve_5.6.23       tzdb_0.4.0          
 [85] svglite_2.1.3        pkgconfig_2.0.3      tools_4.4.2         
 [88] cachem_1.1.0         rbibutils_2.3        DBI_1.2.3           
 [91] numDeriv_2016.8-1.1  fastmap_1.2.0        scales_1.3.0        
 [94] audio_0.1-11         broom_1.0.7          sass_0.4.9          
 [97] coda_0.19-4.1        insight_1.0.1        PBSmodelling_2.69.3 
[100] rpart_4.1.23         farver_2.1.2         reformulas_0.4.0    
[103] mgcv_1.9-1           yaml_2.3.10          latticeExtra_0.6-30 
[106] foreign_0.8-87       cli_3.6.3            lifecycle_1.0.4     
[109] mvtnorm_1.3-3        lava_1.8.1           sessioninfo_1.2.2   
[112] backports_1.5.0      timechange_0.3.0     gtable_0.3.6        
[115] progressr_0.15.1     parallel_4.4.2       testthat_3.2.3      
[118] jsonlite_1.8.9       mitml_0.4-5          RPushbullet_0.3.4   
[121] bit64_4.6.0-1        brio_1.1.5           glasso_1.11         
[124] vegan_2.6-8          zip_2.3.1            RcppParallel_5.1.9  
[127] GPArotation_2024.3-1 jquerylib_0.1.4      sem_3.1-16          
[130] polspline_1.1.25     R.utils_2.12.3       timeDate_4041.110   
[133] dcurver_0.9.2        lisrelToR_0.3        htmltools_0.5.8.1   
[136] glue_1.8.0           tcltk_4.4.2          rprojroot_2.0.4     
[139] mclust_6.1.1         mnormt_2.1.1         jpeg_0.1-10         
[142] boot_1.3-31          igraph_2.1.3         R6_2.5.1            
[145] arm_1.14-4           fdrtool_1.2.18       Deriv_4.1.6         
[148] CompQuadForm_1.4.3   labeling_0.4.3       cluster_2.1.6       
[151] ipred_0.9-15         nloptr_2.1.1         tidyselect_1.2.1    
[154] plotrix_3.8-4        htmlTable_2.4.3      xml2_1.3.6          
[157] future_1.34.0        ModelMetrics_1.2.2.2 munsell_0.5.1       
[160] mi_1.1               animation_2.7        data.table_1.16.4   
[163] htmlwidgets_1.6.4    RColorBrewer_1.1-3   rlang_1.1.5         
[166] hardhat_1.4.0        prodlim_2024.06.25  

References

Gandrud, C. (2020). Reproducible research with R and R studio (3rd ed.). CRC Press. https://www.routledge.com/Reproducible-Research-with-R-and-RStudio/Gandrud/p/book/9780367143985
Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251). https://doi.org/10.1126/science.aac4716
Tackett, J. L., Brandes, C. M., King, K. M., & Markon, K. E. (2019). Psychology’s replication crisis and clinical psychological science. Annual Review of Clinical Psychology, 15(1), 579–604. https://doi.org/10.1146/annurev-clinpsy-050718-095710
Tackett, J. L., Brandes, C. M., & Reardon, K. W. (2019). Leveraging the open science framework in clinical psychological assessment research. Psychological Assessment, 31(12), 1386–1394. https://doi.org/10.1037/pas0000583

Feedback

Please consider providing feedback about this textbook, so that I can make it as helpful as possible. You can provide feedback at the following link: https://forms.gle/95iW4p47cuaphTek6