I need your help!
I want your feedback to make the book better for you and other readers. If you find typos, errors, or places where the text may be improved, please let me know. The best ways to provide feedback are by GitHub or hypothes.is annotations.
Opening an issue or submitting a pull request on GitHub: https://github.com/isaactpetersen/Fantasy-Football-Analytics-Textbook
Adding an annotation using hypothes.is. To add an annotation, select some text and then click the symbol on the pop-up menu. To see the annotations of others, click the symbol in the upper right-hand corner of the page.
References
Ægisdóttir, S., White, M. J., Spengler, P. M., Maugherman, A. S.,
Anderson, L. A., Cook, R. S., Nichols, C. N., Lampropoulos, G. K.,
Walker, B. S., Cohen, G., & Rush, J. D. (2006). The meta-analysis of
clinical judgment project: Fifty-six years of accumulated research on
clinical versus statistical prediction. The Counseling
Psychologist, 34(3), 341–382. https://doi.org/10.1177/0011000005285875
Akinshin, A. (2023). Weighted quantile estimators. arXiv. https://doi.org/10.48550/arXiv.2304.07265
Andersen, D., Petersen, I. T., & Tungate, A. (2024). ffanalytics: Scrape data for fantasy
football. https://github.com/FantasyFootballAnalytics/ffanalytics
Atanasov, P., Witkowski, J., Ungar, L., Mellers, B., & Tetlock, P.
(2020). Small steps to accuracy: Incremental belief updaters are better
forecasters. Organizational Behavior and Human Decision
Processes, 160, 19–35. https://doi.org/10.1016/j.obhdp.2020.02.001
Austin, P. C., & Steyerberg, E. W. (2014). Graphical assessment of
internal and external calibration of logistic regression models by using
loess smoothers. Statistics in Medicine, 33(3),
517–535. https://doi.org/10.1002/sim.5941
Avugos, S., Köppen, J., Czienskowski, U., Raab, M., & Bar-Eli, M.
(2013). The “hot hand” reconsidered: A meta-analytic
approach. Psychology of Sport and Exercise, 14(1),
21–27. https://doi.org/10.1016/j.psychsport.2012.07.005
Baird, C., & Wagner, D. (2000). The relative validity of actuarial-
and consensus-based risk assessment systems. Children and Youth
Services Review, 22(11), 839–871. https://doi.org/10.1016/S0190-7409(00)00122-5
Bar-Eli, M., Avugos, S., & Raab, M. (2006). Twenty years of
“hot hand” research: Review and critique. Psychology of
Sport and Exercise, 7(6), 525–553. https://doi.org/10.1016/j.psychsport.2006.03.001
Bocskocsky, A., Ezekowitz, J., & Stein, C. (2014). The hot hand: A
new approach to an old “fallacy.” MIT Sloan Sports
Analytics Conference.
Bolger, F., & Önkal-Atay, D. (2004). The effects of feedback on
judgmental interval predictions. International Journal of
Forecasting, 20(1), 29–39. https://doi.org/10.1016/S0169-2070(03)00009-8
Chang, W. (2018). R graphics cookbook: Practical recipes for
visualizing data (2nd ed.). O’Reilly Media. https://r-graphics.org
Chatterjee, S. (2021). A new coefficient of correlation. Journal of
the American Statistical Association, 116(536), 2009–2022.
https://doi.org/10.1080/01621459.2020.1758115
Cohen, J. (1988). Statistical power analysis for the behavioral
sciences (2nd ed.). Lawrence Erlbaum Associates, Publishers. https://doi.org/10.4324/9780203771587
Congelio, B. J. (2023). Introduction to NFL analytics
with R. CRC Press. https://bradcongelio.com/nfl-analytics-with-r-book
Corston, R., & Colman, A. M. (2000). A crash course in SPSS for
Windows. Wiley-Blackwell.
Critcher, C. R., & Rosenzweig, E. L. (2014). The performance
heuristic: A misguided reliance on past success when predicting
prospects for improvement. Journal of Experimental Psychology:
General, 143(2), 480–485. https://doi.org/10.1037/a0034129
D’Onofrio, B. M., Sjölander, A., Lahey, B. B., Lichtenstein, P., &
Öberg, A. S. (2020). Accounting for confounding in observational
studies. Annual Review of Clinical Psychology, 16(1),
25–48. https://doi.org/10.1146/annurev-clinpsy-032816-045030
Dana, J., & Thomas, R. (2006). In defense of clinical judgment … and
mechanical prediction. Journal of Behavioral Decision Making,
19(5), 413–428. https://doi.org/10.1002/bdm.537
Dawes, R. M., Faust, D., & Meehl, P. E. (1989). Clinical versus
actuarial judgment. Science, 243(4899), 1668–1674. https://doi.org/10.1126/science.2648573
Den Hartigh, R. J. R., Niessen, A. S. M., Frencken, W. G. P., &
Meijer, R. R. (2018). Selection procedures in sports:
Improving predictions of athletes’ future performance.
European Journal of Sport Science, 18(9), 1191–1198.
https://doi.org/10.1080/17461391.2018.1480662
Digitale, J. C., Martin, J. N., & Glymour, M. M. (2022). Tutorial on
directed acyclic graphs. Journal of Clinical Epidemiology,
142, 264–267. https://doi.org/10.1016/j.jclinepi.2021.08.001
Eastwell, P. (2014). Understanding hypotheses, predictions, laws, and
theories. Science Education Review, 13(1), 16–21.
Eddy, D. M. (1982). Probabilistic reasoning in clinical medicine:
Problems and opportunities. In D. Kahneman, P. Slovic, & A. Tversky
(Eds.), Judgment under uncertainty: Heuristics and biases (pp.
249–267). Cambridge University Press.
Enke, B. (2020). What you see is all there is. The Quarterly Journal
of Economics, 135(3), 1363–1398. https://doi.org/10.1093/qje/qjaa012
Farrington, D. P., & Loeber, R. (1989). Relative improvement over
chance (RIOC) and phi as measures of predictive efficiency
and strength of association in 2×2 tables. Journal of Quantitative
Criminology, 5(3), 201–213. https://doi.org/10.1007/BF01062737
Gandrud, C. (2020). Reproducible research with R and
R studio (3rd ed.). CRC Press. https://www.routledge.com/Reproducible-Research-with-R-and-RStudio/Gandrud/p/book/9780367143985
Garb, H. N., & Wood, J. M. (2019). Methodological advances in
statistical prediction. Psychological Assessment,
31(12), 1456–1466. https://doi.org/10.1037/pas0000673
Getty, D., Li, H., Yano, M., Gao, C., & Hosoi, A. E. (2018). Luck
and the law: Quantifying chance in fantasy sports and other contests.
SIAM Review, 60(4), 869–887. https://doi.org/10.1137/16m1102094
Gilovich, T., Vallone, R., & Tversky, A. (1985). The hot hand in
basketball: On the misperception of random sequences. Cognitive
Psychology, 17(3), 295–314. https://doi.org/10.1016/0010-0285(85)90010-6
Goodman, S. (2008). A dirty dozen: Twelve p-value
misconceptions. Seminars in Hematology, 45(3),
135–140. https://doi.org/10.1053/j.seminhematol.2008.04.003
Grove, W. M., & Meehl, P. E. (1996). Comparative efficiency of
informal (subjective, impressionistic) and formal (mechanical,
algorithmic) prediction procedures: The clinical–statistical
controversy. Psychology, Public Policy, and Law, 2(2),
293–323. https://doi.org/10.1037/1076-8971.2.2.293
Grove, W. M., Zald, D. H., Lebow, B. S., Snitz, B. E., & Nelson, C.
(2000). Clinical versus mechanical prediction: A meta-analysis.
Psychological Assessment, 12(1), 19–30. https://doi.org/10.1037/1040-3590.12.1.19
Harrell, Jr., F. E. (2024). rms:
Regression modeling strategies. https://hbiostat.org/R/rms/
Hoch, S. J. (1985). Counterfactual reasoning and accuracy in predicting
personal events. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 11(4), 719–731. https://doi.org/10.1037/0278-7393.11.1-4.719
Hough, S. E. (2016). Predicting the unpredictable: The tumultuous
science of earthquake prediction. Princeton University Press.
Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting:
Principles and practice (3rd ed.). OTexts. https://otexts.com/fpp3
Iacobucci, D., Schneider, M. J., Popovich, D. L., & Bakamitsos, G.
A. (2016). Mean centering helps alleviate “micro” but not
“macro” multicollinearity. Behavior Research
Methods, 48(4), 1308–1317. https://doi.org/10.3758/s13428-015-0624-x
Johnson, J. E. V., & Bruce, A. C. (2001). Calibration of subjective
probability judgments in a naturalistic setting. Organizational
Behavior and Human Decision Processes, 85(2), 265–290. https://doi.org/10.1006/obhd.2000.2949
Kahneman, D. (2011). Thinking, fast and slow. Farrar,
Straus, and Giroux.
Kassambara, A. (2017). Practical guide to cluster analysis in
R: Unsupervised machine learning (Vol.
1). Sthda.
Keren, G. (1987). Facing uncertainty in the game of bridge: A
calibration study. Organizational Behavior and Human Decision
Processes, 39(1), 98–114. https://doi.org/10.1016/0749-5978(87)90047-1
Kessler, R. C., Bossarte, R. M., Luedtke, A., Zaslavsky, A. M., &
Zubizarreta, J. R. (2020). Suicide prediction models: A critical review
of recent research with recommendations for the way forward.
Molecular Psychiatry, 25(1), 168–179. https://doi.org/10.1038/s41380-019-0531-0
Kievit, R., Frankenhuis, W., Waldorp, L., & Borsboom, D. (2013).
Simpson’s paradox in psychological science: A practical guide.
Frontiers in Psychology, 4(513). https://doi.org/10.3389/fpsyg.2013.00513
Koehler, D. J., Brenner, L., & Griffin, D. (2002). The calibration
of expert judgment: Heuristics and biases beyond the laboratory. In T.
Gilovich, D. Griffin, & D. Kahneman (Eds.), Heuristics and
biases: The psychology of intuitive judgment. Cambridge University
Press.
Koriat, A., Lichtenstein, S., & Fischhoff, B. (1980). Reasons for
confidence. Journal of Experimental Psychology: Human Learning and
Memory, 6(2), 107–118. https://doi.org/10.1037/0278-7393.6.2.107
Kotrba, V. (2020). Heuristics in fantasy sports: Is it profitable to
strategize based on favourite of the match? Mind & Society,
19(1), 195–206. https://doi.org/10.1007/s11299-020-00231-7
Larrick, R. P., Mannes, A. E., & Soll, J. B. (2024). The social
psychology of the wisdom of crowds (with a new section on recent
advances). In F. M. Federspiel, G. Montibeller, & M. Seifert (Eds.),
Behavioral decision analysis (pp. 121–143). Springer. https://doi.org/10.1007/978-3-031-44424-1_7
Lederer, D. J., Bell, S. C., Branson, R. D., Chalmers, J. D., Marshall,
R., Maslove, D. M., Ost, D. E., Punjabi, N. M., Schatz, M., Smyth, A.
R., Stewart, P. W., Suissa, S., Adjei, A. A., Akdis, C. A., Azoulay, É.,
Bakker, J., Ballas, Z. K., Bardin, P. G., Barreiro, E., … Vincent, J.-L.
(2019). Control of confounding and reporting of results in causal
inference studies. Guidance for authors from editors of respiratory,
sleep, and critical care journals. Annals of the American Thoracic
Society, 16(1), 22–28. https://doi.org/10.1513/AnnalsATS.201808-564PS
Lee, M. D., & Liu, S. (2022). Drafting strategies in fantasy
football: A study of competitive sequential human decision making.
Judgment and Decision Making, 17(4), 691–719. https://doi.org/10.1017/S1930297500008901
Lilienfeld, S. O. (2007). Psychological treatments that cause harm.
Perspectives on Psychological Science, 2(1), 53–70. https://doi.org/10.1111/j.1745-6916.2007.00029.x
Lindhiem, O., Petersen, I. T., Mentch, L. K., & Youngstrom, E. A.
(2020). The importance of calibration in clinical psychology.
Assessment, 27(4), 840–854. https://doi.org/10.1177/1073191117752055
Lyons, B. D., Hoffman, B. J., Michel, J. W., & Williams, K. J.
(2011). On the predictive efficiency of past performance and physical
ability: The case of the national football league. Human
Performance, 24(2), 158–172. https://doi.org/10.1080/08959285.2011.555218
Makridakis, S., Hogarth, R. M., & Gaba, A. (2009). Forecasting and
uncertainty in the economic and business world. International
Journal of Forecasting, 25(4), 794–812. https://doi.org/10.1016/j.ijforecast.2009.05.012
Mannes, A. E., Soll, J. B., & Larrick, R. P. (2014). The wisdom of
select crowds. Journal of Personality and Social Psychology,
107(2), 276–299. https://doi.org/10.1037/a0036677
McGrath, R. E., & Meyer, G. J. (2006). When effect sizes disagree:
The case of r and d. Psychological Methods,
11(4), 386–401. https://doi.org/10.1037/1082-989X.11.4.386
Meehl, P. E. (1957). When shall we use our heads instead of the formula?
Journal of Counseling Psychology, 4(4), 268–273. https://doi.org/10.1037/h0047554
Meehl, P. E. (1978). Theoretical risks and tabular asterisks:
Sir Karl, Sir
Ronald, and the slow progress of soft psychology.
Journal of Consulting and Clinical Psychology, 46(4),
806–834. https://doi.org/10.1037/0022-006x.46.4.806
Meehl, P. E. (1986). Causes and effects of my disturbing little book.
Journal of Personality Assessment, 50(3), 370–375. https://doi.org/10.1207/s15327752jpa5003_6
Meehl, P. E., & Rosen, A. (1955). Antecedent probability and the
efficiency of psychometric signs, patterns, or cutting scores.
Psychological Bulletin, 52(3), 194–216. https://doi.org/10.1037/h0048070
Miller, J. B., & Sanjurjo, A. (2014). A cold shower for the hot hand
fallacy. Innocenzo Gasparini Institute for Economic Research.
https://repec.unibocconi.it/igier/igi/wp/2014/518.pdf
Miller, R. M. (2013). Cognitive bias in fantasy sports: Is your
brain sabotaging your team? Xlibris Press.
Mlodinow, L. (2008). The drunkard’s walk: How randomness rules our
lives. Pantheon Books.
Moore, D. A., & Healy, P. J. (2008). The trouble with
overconfidence. Psychological Review, 115(2), 502–517.
https://doi.org/10.1037/0033-295X.115.2.502
Morley, S. K., Brito, T. V., & Welling, D. T. (2018). Measures of
model performance based on the log accuracy ratio. Space
Weather, 16(1), 69–88. https://doi.org/10.1002/2017SW001669
Motz, B. (2013). Fantasy football: A touchdown for undergraduate
statistics education. Proceedings of the Games, Learning, and
Society Conference, 9.0, 222–228. https://doi.org/10.1184/R1/6686804.v1
Murphy, A. H., & Winkler, R. L. (1984). Probability forecasting in
meterology. Journal of the American Statistical Association,
79(387), 489–500. https://doi.org/10.2307/2288395
Oskamp, S. (1965). Overconfidence in case-study judgments. Journal
of Consulting Psychology, 29(3), 261–265. https://doi.org/10.1037/h0022125
Pelechrinis, K., & Winston, W. (2022). The hot hand in the wild.
PLOS ONE, 17(1), e0261890. https://doi.org/10.1371/journal.pone.0261890
Petersen, I. T. (2024a). petersenlab: A
collection of R functions by the Petersen
Lab. https://github.com/DevPsyLab/petersenlab
Petersen, I. T. (2024c). Principles of psychological assessment:
With applied examples in R. University of Iowa
Libraries. https://doi.org/10.25820/work.007199
Petersen, I. T. (2024b). Principles of psychological assessment:
With applied examples in R. Chapman and
Hall/CRC. https://doi.org/10.1201/9781003357421
Rader, C. A., Larrick, R. P., & Soll, J. B. (2017). Advice as a form
of social influence: Informational motives and the consequences for
accuracy. Social and Personality Psychology Compass,
11(8), e12329. https://doi.org/https://doi.org/10.1111/spc3.12329
Rice, M. E., Harris, G. T., & Lang, C. (2013). Validation of and
revision to the VRAG and SORAG: The
Violence Risk Appraisal Guide—Revised
(VRAG-R). Psychological Assessment,
25(3), 951–965. https://doi.org/10.1037/a0032878
Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez,
J.-C., & Müller, M. (2023). pROC:
Display and analyze ROC curves. https://xrobin.github.io/pROC/
Rohrer, J. M. (2018). Thinking clearly about correlations and causation:
Graphical causal models for observational data.
Advances in Methods and Practices in Psychological Science,
1(1), 27–42. https://doi.org/10.1177/2515245917745629
Russo, J. E., & Schoemaker, P. J. (1992). Managing overconfidence.
Sloan Management Review, 33(2), 7.
Schwabish, J. (2021). Better data visualizations: A guide for
scholars, researchers, and wonks. Columbia University Press.
Scrucca, L., Fraley, C., Murphy, T. B., & Raftery, A. E. (2023).
Model-based clustering, classification, and density estimation using
mclust in R. Chapman;
Hall/CRC.
Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002).
Experimental and quasi-experimental designs for generalized causal
inference. Houghton Mifflin.
Silver, N. (2012). The signal and the noise: Why so many predictions
fail–but some don’t. Penguin.
Simoiu, C., Sumanth, C., Mysore, A., & Goel, S. (2019). Studying the
"wisdom of crowds" at scale. Proceedings of the AAAI Conference on
Human Computation and Crowdsourcing, 7(1), 171–179. https://doi.org/10.1609/hcomp.v7i1.5271
Skala, D. (2008). Overconfidence in psychology and finance–an
interdisciplinary literature review. Bank i Kredyt, 4,
33–50.
Smith, B., Sharma, P., & Hooper, P. (2006). Decision making in
online fantasy sports communities. Interactive Technology and Smart
Education, 3(4), 347–360. https://doi.org/10.1108/17415650680000072
Spector, P. E., & Brannick, M. T. (2010). Methodological urban
legends: The misuse of statistical control variables.
Organizational Research Methods, 14(2), 287–305. https://doi.org/10.1177/1094428110369842
Stevens, R. J., & Poppe, K. K. (2020). Validation of clinical
prediction models: What does the “calibration slope” really
measure? Journal of Clinical Epidemiology, 118, 93–99.
https://doi.org/10.1016/j.jclinepi.2019.09.016
Steyerberg, E. W., & Vergouwe, Y. (2014). Towards better clinical
prediction models: Seven steps for development and an ABCD for
validation. European Heart Journal, 35(29), 1925–1931.
https://doi.org/10.1093/eurheartj/ehu207
Surowiecki, J. (2005). The wisdom of crowds. Anchor Books.
Tetlock, P. E. (2017). Expert political judgment: How good is it?
How can we know? - New edition. Princeton University
Press.
Textor, J., Zander, B. van der, Gilthorpe, M. S., Liśkiewicz, M., &
Ellison, G. T. (2017). Robust causal inference using directed acyclic
graphs: The R package “dagitty”.
International Journal of Epidemiology, 45(6),
1887–1894. https://doi.org/10.1093/ije/dyw341
Tofallis, C. (2015). A better measure of relative prediction accuracy
for model selection and model estimation. Journal of the Operational
Research Society, 66(8), 1352–1362. https://doi.org/10.1057/jors.2014.103
Treat, T. A., & Viken, R. J. (2023). Measuring test performance with
signal detection theory techniques. In H. Cooper, M. N. Coutanche, L. M.
McMullen, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA
handbook of research methods in psychology: Foundations, planning,
measures, and psychometrics (2nd ed., Vol. 1, pp. 837–858).
American Psychological Association.
Tufte, E. R. (2001). The visual display of quantitative
information. Graphics Press.
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty:
Heuristics and biases. Science, 185(4157), 1124–1131.
https://doi.org/10.1126/science.185.4157.1124
Ursenbach, J., O’Connell, M. E., Neiser, J., Tierney, M. C., Morgan, D.,
Kosteniuk, J., & Spiteri, R. J. (2019). Scoring algorithms for a
computer-based cognitive screening tool: An illustrative example of
overfitting machine learning approaches and the impact on estimates of
classification accuracy. Psychological Assessment,
31(11), 1377–1382. https://doi.org/10.1037/pas0000764
Wagner, C., & Vinaimont, T. (2010). Evaluating the wisdom of crowds.
Issues in Information Systems, 11(1), 724–732. http://iacis.org/iis/2010/724-732_LV2010_1546.pdf
White, M. H., & Sheldon, K. M. (2014). The contract year syndrome in
the NBA and MLB: A classic
undermining pattern. Motivation and Emotion, 38(2),
196–205. https://doi.org/10.1007/s11031-013-9389-7
Wickham, H. (2024). ggplot2: Elegant graphics for data analysis
(3rd ed.). Springer. https://ggplot2-book.org
Williams, A. J., Botanov, Y., Kilshaw, R. E., Wong, R. E., &
Sakaluk, J. K. (2021). Potentially harmful therapies: A meta-scientific
review of evidential value. Clinical Psychology: Science and
Practice, 28(1), 5–18. https://doi.org/10.1111/cpsp.12331
Woodland, L. M., & Woodland, B. M. (2015). The National
Football League season wins total betting market: The impact of
heuristics on behavior. Southern Economic Journal,
82(1), 38–54. https://doi.org/10.4284/0038-4038-2013.145
Wysocki, A. C., Lawson, K. M., & Rhemtulla, M. (2022). Statistical
control requires causal justification. Advances in Methods and
Practices in Psychological Science, 5(2),
25152459221095823. https://doi.org/10.1177/25152459221095823